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Individual cells—even those of ostensibly the same cell type—can 
differ from each other in several ways. Some of these differences 
can result in a ‘primed’ cellular state that can, in a particular con-

text, ultimately lead to biologically distinct behaviors1,2. This cellular 
priming underlies a number of important single-cell phenomena. 
For instance, when anti-cancer therapeutics are applied to clonally 
derived cancer cells, most of the cells die; however, a small num-
ber of cells survive and proliferate, and these cells drive therapy 
resistance3–6. Yet while this phenomenon suggests the existence of 
rare, primed cells in the initial population, it remains unclear what 
distinguishes these cells at the molecular level from the rest of the 
population.

We and others have shown that rare cells within an isogenic 
population can exhibit fluctuations in expression of several genes 
simultaneously, which predict rare cell phenotypes and persist 
through multiple cell divisions3,7. What remains largely unknown, 
outside of a few cases6,8,9, is precisely how this variability maps to 
distinct cellular outcomes following a treatment. As a result, several 
questions remain unanswered. Is molecular variability in the ini-
tial state of cells inconsequential because all cells ultimately funnel 
into the same cell fate? Can different cell fates arise from otherwise 
indistinguishable initial molecular states? Or can most differences 
in ultimate fate be traced back to measurable differences in the ini-
tial states of cells? What is the structure of this initial variability? 
These questions remain largely unanswered because of our limited 
ability to longitudinally track and profile cells (especially rare ones) 
from initial state to final fate. Longitudinal profiling by time-lapse 
microscopy is generally limited in its ability to interrogate large 
numbers of molecular features simultaneously8,10. Barcoding, in 
which cells are labeled by unique and sometimes mutable nucleic 

acid sequences11–16, allows one to track and profile single cells by 
sequencing or imaging-based readouts17–20. However, a key chal-
lenge for both of these methodologies is the detection of rare cells 
(1:1,000 or even more rare), for which neither time-lapse nor 
single-cell RNA sequencing is particularly effective (new techniques 
aim to circumvent these limitations21–24). Yet many biological phe-
nomena, such as therapy resistance in cancer cells, occur in sub-
populations that are at least that rare.

Here we explicitly connect drug-resistant cell fates in mela-
noma to specific molecular features in rare subsets of cells in the 
drug-naive population. These connections reveal a rich mapping 
between previously hidden single-cell variability and several latent 
cellular behaviors. Our results suggest the existence of a large num-
ber of rare subpopulations within seemingly homogenous cells, each 
with potentially distinct biological behaviors, and set out a path to 
discover biologically consequential axes of variability.

Results
Rewind enables retrospective identification of rare cell popu-
lations. Therapy resistance in cancer provides an excellent sys-
tem in which to map out the connections between rare cell states 
and fates. In this context, fates refer to cells that proliferate when 
treated with targeted therapies, and the states are the molecular pro-
files of drug-naive cells that will ultimately lead to these resistant 
fates. These variable profiles can appear even in clonally derived 
lines and have a non-genetic basis3–6. In this study, we focused on 
BRAFV600E-mutated melanoma, in which we have previously dem-
onstrated that there is a rare, transient subpopulation composed of 
cells (~1:2,000) that are ‘primed’ to survive treatment by the tar-
geted therapy vemurafenib7,25. These rare, primed cells often express 
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Molecular differences between individual cells can lead to dramatic differences in cell fate, such as death versus survival of 
cancer cells upon drug treatment. These originating differences remain largely hidden due to difficulties in determining pre-
cisely what variable molecular features lead to which cellular fates. Thus, we developed Rewind, a methodology that combines 
genetic barcoding with RNA fluorescence in situ hybridization to directly capture rare cells that give rise to cellular behaviors 
of interest. Applying Rewind to BRAFV600E melanoma, we trace drug-resistant cell fates back to single-cell gene expression dif-
ferences in their drug-naive precursors (initial frequency of ~1:1,000–1:10,000 cells) and relative persistence of MAP kinase 
signaling soon after drug treatment. Within this rare subpopulation, we uncover a rich substructure in which molecular differ-
ences among several distinct subpopulations predict future differences in phenotypic behavior, such as proliferative capacity 
of distinct resistant clones after drug treatment. Our results reveal hidden, rare-cell variability that underlies a range of latent 
phenotypic outcomes upon drug exposure.
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Isolating the rare cells that give 
rise to drug resistance using Rewind
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Fig. 1 | Rewind identifies rare cell states giving rise to vemurafenib-resistant colonies. a, Schematic of Rewind approach for isolating the initial primed 
WM989 A6-G3 melanoma cells that ultimately give rise to vemurafenib-resistant colonies. For the experiment shown, we transduced ~200,000 WM989 
A6-G3 cells at an MOI of ~1.0 with our Rewind barcode library. After 11 d (~4 population doublings), we divided the culture in two, fixing half in suspension 
as a Carbon Copy and treating the other half with 1 μM vemurafenib to select for resistant cells. After 3 weeks in vemurafenib, we extracted gDNA from 
the resistant cells that remained and identified their Rewind barcodes by targeted sequencing. We then designed RNA FISH probes targeting 60 of 
these barcodes and used these probes to specifically label cells primed to become resistant from our Carbon Copy. We then sorted these cells out from 
the population, extracted cellular RNA and performed RNA sequencing. b, To assess the sensitivity and specificity of the Rewind experiment in a, we 
performed targeted sequencing to identify barcodes from cDNA generated during RNA sequencing library preparation. Bar graphs show the abundance 
(y axis) and rank (x axis) of each sequenced barcode (≥5 normalized reads). Red bars correspond to barcodes targeted by our probe set, and gray bars 
correspond to ‘off-target’ barcode sequences. The inset shows the percent of barcode sequencing reads that match a probe-targeted barcode. These data 
correspond to one of two replicates. c, We performed differential expression analysis using DESeq2 of primed versus non-primed sorted cells. Shown is 
the mean expression level (log2(TPM)) for protein-coding genes in primed cells (y axis) and log2 fold change in expression estimated using DESeq2 (x 
axis) compared to non-primed cells. Colors indicate differentially expressed genes related to ECM organization and cell migration (red), MAPK and PI3K/
Akt signaling pathways (blue) and previously identified resistance markers6 (purple). Genes were assigned to categories based on a consensus of KEGG 
pathway and Gene Ontology enrichment analyses (see Methods for details). d, We selected the most differentially expressed gene encoding a cell surface 
protein (ITGA3) to validate as a predictive marker of vemurafenib resistance in WM989 A6-G3. After staining cells with a fluorescently labeled antibody 
targeting ITGA3, we sorted the brightest 0.5% (ITGA3-High) and remaining (ITGA3-Low) populations and then treated both with 1 μM vemurafenib. After 
approximately 18 d, we fixed the cells, stained nuclei with DAPI and then imaged the entire wells to quantify the number of resistant colonies and cells. The 
data correspond to one of three biological replicates (see Supplementary Fig. 4 for additional replicates).
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higher levels of certain receptor tyrosine kinases (such as EGFR, 
NGFR and AXL) and lower levels of melanocyte-determining tran-
scription factors (SOX10 and MITF) than the rest of the cells in 
the population. However, these markers are highly imperfect, with 
many positive cells being non-resistant and many negative cells 
being resistant, leaving open the question as to what markers spe-
cifically mark the primed state.

The primary technical challenge for studying rare cell processes 
like drug resistance is the rarity of the cells of interest. Current 
techniques for retrospective identification require profiling of the 
entire initial population and then post facto determining which 
profiles correspond to cells of interest17,18. We developed an alter-
native methodology, dubbed Rewind, to retrospectively isolate or 
identify rare cell populations of interest for downstream character-
ization. Rewind works by using a lentiviral library of transcribed 
barcodes, in which the barcode sequence is incorporated into the 3′ 
untranslated region of green fluorescent protein (GFP) messenger 
RNA (mRNA) (Fig. 1a and Supplementary Fig. 1a). After labeling 
cells with these barcodes, we allowed the cells to divide for a few 
divisions and then separated the population into two equal groups 
(‘twins’) such that most barcoded lineages (>90%) were present in 
each group (see Methods for discussion and empirical simulations). 
One group we fix in time as a ‘Carbon Copy’ of the cells in their ini-
tial state, and to the other we apply the treatment to see which cells 
undergo the rare behavior of interest (for example, becoming resis-
tant to drug). After selecting the cells that undergo the rare behav-
ior, we sequence their DNA to identify their barcodes, and then we 
use those barcodes to identify their ‘twins’ in the Carbon Copy by 
fluorescently labeling the RNA transcribed from those specific bar-
codes using RNA in situ hybridization techniques (Supplementary 
Fig. 1b,c,f,h). We verified that the barcode library was sufficiently 
diverse to label 100,000s of cells with over 99% receiving unique 
barcodes, thus minimizing spurious identification (see Methods 
and Supplementary Fig. 2 for experimental details and calcula-
tions). Once isolated, we can molecularly profile the Carbon Copy 
twins to determine what is different about their initial state that led 
to their distinct fate. Altogether, the Rewind methodology enables 
the retrospective uncovering of primed cell states that lead to rare 
cell behaviors.

A critical feature of these rare primed cell states is that they 
are transient, meaning that cells can fluctuate both into and out 
of the primed state3,6. A key question that is relevant to the abil-
ity of Rewind to profile primed cells is whether these cells main-
tain (‘remember’) their primed state through several cell divisions. 
(Memory would be required for the profile of cells isolated from 
the Carbon Copy to reflect those of their twins that received treat-
ment with vemurafenib.) To empirically test for the existence of 
such memory, we let a barcoded WM989 A6-G3 culture double 
4–5 times, split the culture in two and then separately treated both 
halves of the population with vemurafenib. We found a large over-
lap in the barcodes between the two halves, demonstrating that the 
primed state is maintained for several divisions and that there is  

sufficient memory in the system for Rewind to effectively profile the 
primed state (Supplementary Fig. 3).

Tracing vemurafenib-resistant melanoma cells back to their 
rare, drug-naive precursors for gene expression profiling. We 
applied the Rewind approach to isolate the rare WM989 A6-G3 cells 
primed for vemurafenib resistance by fluorescence-activated cell 
sorting (FACS), after which we profiled these primed drug-naive 
cells by RNA sequencing (Fig. 1 and Supplementary Fig. 4a). 
Upon sequencing barcodes from complementary DNA (cDNA), 
we found that ~48% of reads in the sorted primed subpopula-
tion contained probe-targeted barcodes matching those identified 
in vemurafenib-resistant colonies (versus 0% in the non-primed 
subpopulation), reflecting an estimated ~1,600-fold enrichment 
over the baseline frequency of these barcodes in the Carbon Copy 
(~0.03%; Fig. 1b). (We suspect that the proportion of on-target cells 
isolated here is lower than in our pilot experiments (Supplementary 
Fig. 1b,c) due to the lower prevalence of the targeted cells.) Having 
confirmed that FACS enriched for primed cells, we then looked 
for differentially expressed genes compared to non-primed cells. 
Consistent with previous research from our lab and others, we 
found that primed cells sorted from the Carbon Copy expressed 
greater than two-fold higher levels of the receptor tyrosine kinases 
AXL, EGFR and NGFR, as well as lower levels of the melanocyte 
transcription factors SOX10 and MITF (Supplementary Fig. 4c)6,26. 
Beyond these known markers, the transcriptome profile provided 
by Rewind enabled us to identify nearly 200 new marker genes 
whose expression was significantly altered in primed cells. Among 
these genes, we found a significant enrichment for genes associated 
with cell adhesion, extracellular matrix (ECM) organization and 
cell migration (Fig. 1c, Supplementary Fig. 4d and Supplementary 
Table 6). Longitudinal tracking of primed cells revealed that the 
expression of most priming marker genes either stayed the same or 
increased during the acquisition of stable resistance over 3 weeks 
in vemurafenib treatment, and an additional ~2,800 genes showed 
a greater than two-fold change in expression during this period 
(Supplementary Fig. 5 and Supplementary Table 7). Thus, most of 
the genes that are upregulated in resistant cells are not the genes 
whose expression marks the primed state, thus motivating the use 
of Rewind to identify these markers.

Many of these markers have not previously been implicated in 
cellular priming for vemurafenib resistance and hence represent 
potentially novel single-cell biomarkers of resistance. An example 
was ITGA3, which was the most differentially expressed cell surface 
marker identified by Rewind. To verify that it marked primed cells, 
we prospectively sorted drug-naive WM989 A6-G3 cells express-
ing high levels of ITGA3. These cells gave rise to ten-fold more 
resistant colonies upon exposure to vemurafenib, confirming that 
ITGA3 is a marker (Fig. 1d and Supplementary Fig. 4e–h). We 
also used Rewind to identify markers in another melanoma line, 
WM983b E9-C6, in which markers of the cells primed for resistance 
were unknown, revealing and validating that AXL was a marker 

Fig. 2 | A coordinated primed cell state characterized by high expression of multiple markers gives rise to vemurafenib resistance in WM989 A6-G3 
cells. a, We performed Rewind with image-based profiling to identify WM989 A6-G3 cells primed to become vemurafenib resistant in situ and measure 
gene expression in individual cells using single-molecule RNA FISH. We expanded barcoded cells for ~4 population doublings before dividing the cells into 
the Carbon Copy or the drug-treated half. b, c, To identify the rare primed cells, we first imaged Carbon Copies at ×20 magnification and identified primed 
cells labeled with our barcode RNA FISH probes using a combination of automated image analysis and manual image review. Once identified, we returned 
to these cells (n = 162) for re-imaging at high magnification (×60) and quantification of marker gene expression using single-molecule RNA FISH. We 
additionally imaged multiple randomly selected positions in each well to quantify marker gene expression in ‘non-primed’ cells (n = 135). d, Quantification 
of single-cell gene expression in primed and non-primed cell subpopulations. Each point corresponds to an individual cell. We set thresholds for high 
marker expression based on the observed expression distribution in non-primed cells (see Methods and Supplementary Fig. 7 for details). e, Frequency 
of cells expressing high levels (beyond the thresholds shown in d) of 1, 2,…7 markers (out of a total of seven measured) simultaneously in primed and 
non-primed cell populations. The number of cells from each subpopulation with data for all seven markers are indicated above each histogram. These data 
correspond to one of two biological replicates (see Supplementary Fig. 7 for the additional replicate).
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(Supplementary Fig. 6). Together, these results demonstrate that 
there are large sets of genes that exhibit rare-cell fluctuations that 
can lead to drug resistance.

Individual primed cells are marked by coordinated expression 
of multiple resistance markers prior to vemurafenib treatment. 
While isolating rare cells that express high levels of these markers  
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enriched for cells that could become drug resistant, we also observed 
that most cells that expressed any one marker still died when faced 
with drug. Thus, there was no one factor whose expression precisely 
marked the cells that were primed for drug resistance. These facts 
suggest that the cellular fluctuations that lead to a cell becoming 
primed for drug resistance may be complex and potentially marked 
by the fluctuations of several genes in tandem. Indeed, the lack of 
knowledge of the precise nature of the mapping between fluctua-
tions and outcomes leaves open a rich set of possibilities. In princi-
ple, fluctuations of genes associated with a particular rare behavior 
need not be independent of each other but might take on many cor-
relation structures and substructures, with sets of genes potentially 
co-fluctuating or anti-fluctuating to demarcate specific subpopu-
lations within the overall rare cell population. A parallel question 
is whether these different subpopulations all funnel to the same 
drug-resistant outcome: it is possible that these new axes of vari-
ability might represent fluctuations that lead primed cells to adopt 
phenotypically distinct cellular fates after, say, the addition of drug. 
Rewind allowed us to look for these new subpopulations.

We first attempted to resolve the question of why most cells that 
expressed any one particular marker actually did not become resistant  
to drug. We hypothesized that simultaneous co-expression of  

multiple markers might more accurately and specifically identify 
the exact cells that are primed to be resistant. To look for evidence 
of such structured fluctuations, we used Rewind in combination 
with RNA imaging to transcriptionally profile primed cells with 
single-molecule resolution (Fig. 2a,b). In this manner, we located 
162 primed cells in situ within a total of ~750,000 cells scanned in 
our Carbon Copy, which we then probed for expression of nine 
genes by single-molecule RNA fluorescence in situ hybridization 
(FISH) (Methods). These cells showed substantially higher expres-
sion of AXL, EGFR, NGFR, WNT5A, ITGA3, MMP1 and FN1 and 
lower expression of SOX10 and MITF than randomly selected cells, 
consistent with our earlier results from RNA sequencing (Fig. 
2c,d). Overall differences in expression capacity were unlikely to 
explain the increased expression of marker genes in primed cells 
(Supplementary Fig. 4b, Supplementary Fig. 4h and Supplementary 
Fig. 7e). Moreover, cells primed for resistance were far more likely to 
co-express pairs of markers (odds ratios ranging from ~1.5 to ≥58; 
Supplementary Fig. 7), and ~87% of cells expressed high levels of 
≥4 of 7 marker genes simultaneously, in stark contrast to cells not 
expressing resistant barcodes (Fig. 2e and Supplementary Fig. 7). 
This apparent coordination suggests that the cell-to-cell differences 
that lead to distinct cell fates after drug treatment are a consequence 
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treatment). We additionally imaged multiple randomly selected positions in each well to quantify total ERK and pERK in non-primed cells (n = 133 cells 
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of two biological replicates (see Supplementary Fig. 8 for the additional replicate). A.U., arbitrary units.
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of the coordinated fluctuations of several factors simultaneously, as 
opposed to sporadic fluctuations of individual genes7.

Primed melanoma cells are marked by higher levels of phosphor-
ylated ERK shortly after, but not before, vemurafenib treatment. 
A possible mechanism for how these primed cells survive drug 
treatment is that the observed increases in expression of multiple 
receptor tyrosine kinases and their cognate ligands lead to differ-
ences in MAPK pathway activation. To address this hypothesis, we 
measured doubly phosphorylated ERK (pERK) levels in primed and 
non-primed cells by immunofluorescence (Fig. 3 and Supplementary 
Fig. 8). We found similar levels of pERK in primed and non-primed 
cells in Carbon Copies fixed before vemurafenib treatment (Fig. 
3b,c and Supplementary Fig. 8a–d). However, in Carbon Copies 
that underwent vemurafenib treatment for 24 h, we found that 
primed cells had residual levels of pERK that were on average 40% 
higher than the rest of the population, with some primed cells hav-
ing levels nearly five-fold higher than non-primed cells (within the 
range of untreated cells; Fig. 3b,c and Supplementary Fig. 8a–d). 
We also observed that, within individual clusters of closely related 
primed cells, not all cells contained higher levels of pERK, which 
might reflect pulsatile changes in pERK as documented elsewhere 
(Supplementary Fig. 8e)27. In contrast, single-cell levels of total ERK 
levels were modestly lower in primed cells compared to non-primed 
cells, both before and after vemurafenib treatment (Fig. 3d and 
Supplementary Fig. 8b). These results suggest that primed cells are 
able to maintain residual MAPK signaling following vemurafenib 
treatment that may allow them to continue proliferating in the face 
of drug.

Distinct drug-resistant fates can be traced back to molecular dif-
ferences within the primed subpopulation. Although these results 
showed an overall coordination between the different marker 
genes in primed cells, there were considerable differences in the 
degree of co-expression among these marker genes in single cells 
(Supplementary Fig. 7c,d,h,i). These differences suggest the possi-
bility that the expression of specific subsets of genes might delineate 
specific subpopulations within the overall rare primed population 
that could in principle have different fates. Evidence for different 
fates comes from inspection: it was visually clear that different colo-
nies of vemurafenib-resistant cells can show dramatic differences in 
basic properties, such as the number of cells in the colony. We won-
dered whether tracing back these differences in fate with Rewind 
could reveal the molecular profiles that distinguish subsets of the 
initial primed cell subpopulation with distinct potential. We applied 
Rewind in the WM989 A6-G3 cell line as before but used the num-
ber of barcode reads in the resistant population as a proxy for the 

number of resistant cells carrying a given barcode (Fig. 4a,b). We 
then designed RNA FISH probes that distinguished 30 of the most 
abundant barcodes (that is, ‘highly resistant’, meaning many resis-
tant cells) from 30 barcodes in the next tier of abundance (that is, 
‘less resistant’; see Fig. 4a,c,d and Supplementary Fig. 9 for probe 
set validation). We used these probes to identify their twin cells in a 
Carbon Copy fixed prior to vemurafenib treatment (Fig. 4b).

To find transcriptional profiles that predict whether cells are 
primed to become either highly resistant or less resistant, we mea-
sured transcript abundances in individual primed cells by RNA 
FISH for nine genes, including seven priming markers, MITF and 
SOX10. We used the dimensional reduction technique uniform 
manifold approximation and projection (UMAP) to visualize dif-
ferences between cells based on expression levels. We then marked 
individual cells in this visualization based on their ultimate fate as 
determined by the barcode RNA FISH signal (primed to become 
highly versus less resistant versus non-primed). We found that 
non-primed cells clearly separated from all the primed cells, and 
that, within the primed cells, the highly resistant primed cells 
grouped together, whereas the less resistant cells formed two dis-
tinct groups (Fig. 4e,f). These groupings were also apparent in 
hierarchical clustering of the single-cell gene expression data, with 
cluster assignment of each cell roughly corresponding to its resis-
tance fate, suggesting a clear distinction between the groupings 
(Supplementary Fig. 10c,e).

We then asked how expression levels of particular genes cor-
responded to these groupings. As expected, most (>80%) of the 
primed cells had markedly decreased levels of both SOX10 and 
MITF (Fig. 4f, Supplementary Fig. 7 and Supplementary Fig. 10c). 
We also found that almost all primed cells had increased levels of 
FN1 (>98%), thus suggesting that FN1 is a ‘pan’ marker of cells 
primed for vemurafenib resistance (Fig. 4f, Supplementary Fig. 7 
and Supplementary Fig. 10c). Co-expression of AXL, ITGA3 and 
EGFR marked cells primed to become highly resistant, but, indi-
vidually, these genes were also expressed in subsets of cells primed 
to become less resistant (Fig. 4f and Supplementary Fig. 10c). These 
subsets could also be distinguished by expression of WNT5A, 
MMP1 and NGFR, with one group (group A) expressing the highest  
levels of WNT5A and MMP1 and the other (group B) expressing 
the highest levels of NGFR (NGFR also had intermediate levels of 
expression in the cells primed to be highly resistant; Fig. 4f). In 
addition, quantitative comparison of expression levels between 
pairs of markers showed that the expression of, for example, AXL 
versus MMP1 fell along two separate axes of variability (Fig. 4g). 
Together, these analyses suggest that multiple classes of primed cells 
with different expression patterns give rise to resistant colonies with 
different phenotypes.

Fig. 4 | Variation in gene expression among primed cells is associated with differences in resistant cell fate. a, We performed Rewind in WM989 A6-G3 
cells and identified barcode sequences enriched in resistant colonies after vemurafenib treatment. We ranked these barcodes by abundance as a proxy 
for ranking the number of resistant cells carrying each specific barcode. We then designed separate RNA FISH probe sets targeting barcodes from the 
~50 most abundant resistant clones (‘highly resistant cells’) and barcodes targeting the next ~50 resistant clones (‘less resistant cells’). Each probe set 
contained probes targeting 30 distinct barcodes. b, We used these separate probe sets to identify corresponding primed cells in the Carbon Copy fixed 
prior to vemurafenib treatment and then performed sequential rounds of RNA FISH to measure single-cell expression of nine genes. We additionally 
imaged multiple randomly selected positions to quantify gene expression in non-primed cells. These data are the same as used in Fig. 2, here analyzed 
using information on which probe set labeled each cell. c, d, To check whether the separate probe sets label barcode RNA corresponding to distinct 
resistant fates, we labeled resistant colonies derived from the same population of cells and then quantified the number of resistant cells labeled with each 
probe set. The number of colonies labeled with each probe set and the average number of cells per colony are shown in Supplementary Fig. 9. These data 
correspond to one biological replicate. e, Using the RNA FISH data from the Carbon Copy in b, we applied the UMAP algorithm to the first five principal 
components to visualize differences in gene expression between primed cells (n = 132) and non-primed cells (n = 124). We then colored each cell by its 
predicted fate based on its barcode. To orient the reader, we circled the largest group of primed cells that give rise to highly resistant colonies in orange 
and the two separate groups of primed cells that give rise to less resistant colonies in green. f, Maintaining the organization provided by UMAP, we colored 
each cell by its expression of each of the nine genes measured. As noted in the text, ≥98% of primed cells had levels of FN1 RNA that were three-fold 
higher than the median observed in non-primed cells, and ≥80% of primed cells had levels of SOX10 and MITF RNA that were ≤1/3 of the median levels 
observed in non-primed cells. g, Scatter plots show the single-cell expression for pairs of markers that distinguished the groupings shown in d.
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Although our labeling scheme did not discriminate between dif-
ferent primed cells that ended up with the same fate, in these imaging 
data, we were able to use spatial proximity of barcode-positive cells 

to infer that neighboring barcode-positive cells were likely derived 
from the same initial cell and therefore belong to a unique subclone 
(Supplementary Fig. 10b). We could then use the single-cell gene 
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expression levels to further determine which primed-cell class these 
cells belonged to and ask whether there were any signs of switching 
between primed cell classes (including reversion to the non-primed 
state) (Supplementary Fig. 10). In nearly half of the subclones (11 
of 24), all cells fell into a single primed-cell class. Moreover, for 
most (7 of 13 remaining) subclones containing a mix of cell states, 
only one cell within the subclone was classified as a separate class 
(Supplementary Fig. 10d, right). These data suggest that primed 
cells can transition between states, and these transitions occur on 
a relatively slow time scale (potentially once per 4 d or ~2–3 cell  
divisions—slow compared to most expression fluctuations), con-
sistent with recent work quantifying the transcriptional memory of 
several primed-cell marker genes7.

DOT1L inhibition enables a distinct primed subpopulation of 
melanoma cells to become vemurafenib resistant. These results 
show that primed cells consist of a complex set of subpopulations 
that can map to a variety of cell fates. A critical point is that the 
mapping and hence subpopulations were revealed by the addition of 
a particular drug. It is possible that there are additional subpopula-
tions present in cells that would normally not survive drug treatment. 
Furthermore, it may be that the molecular differences that charac-
terize these subpopulations could allow otherwise drug-susceptible 
cells to become primed for drug resistance in different conditions. 
Evidence for such a possibility comes from the existence of factors 
that, when perturbed in drug-naive cells, can reduce or increase 
the frequency of resistant colony formation, implying an increase 
or decrease in the number of primed cells within the population25. 
Among these is DOT1L, an H3K79 methylase whose inhibition 
leads to a three-fold increase in the number of resistant colonies that 
form upon addition of vemurafenib25. Although DOT1L inhibition 
removes some type of barrier that allows more cells to be primed, 
this barrier is not removed in all cells because not all cells are able 
to form resistant colonies. Thus, an important question is what dis-
tinguishes the small subset of the cells that become primed for resis-
tance upon DOT1L inhibition from the majority of cells that remain 

non-resistant to drug. (Barcoding analysis revealed that DOT1L 
inhibition indeed permits a new subset of cells to enter a primed 
state rather than affecting proliferation or reversion of primed cells; 
Supplementary Fig. 11.)

Using Rewind, we sought to reveal the molecular profile specific to 
the subpopulation of cells that required DOT1L inhibition to survive 
vemurafenib treatment. To this end, we designed multiple RNA FISH 
probe sets to separately label the cells that required DOT1L inhibi-
tion to become resistant and cells that become resistant irrespective of 
DOT1L inhibitor treatment (Fig. 5a,b). (We expected these probe sets 
to label fewer than 1:10,000 cells.) We then used these probes to sort 
corresponding cells from Carbon Copies fixed before vemurafenib 
treatment (Fig. 5c, Supplementary Fig. 12 and Supplementary Fig. 13). 
RNA sequencing of the sorted subpopulations revealed a few dozen 
genes differentially expressed between cells that required DOT1L 
inhibition to survive vemurafenib treatment and non-primed cells 
(Fig. 5d and Supplementary Fig. 14a–e). Interestingly, we observed 
differences in expression even in the absence of DOT1L inhibition, 
suggesting that these genes marked a subpopulation that exists inde-
pendent of the inhibition of DOT1L but nevertheless requires DOT1L 
inhibition to become resistant (Supplementary Fig. 14). Although 
most differentially expressed genes were also expressed in ‘conven-
tionally primed’ cells, there were a few genes whose expression was 
somewhat specific to cells that were primed for resistance only when 
DOT1L was inhibited (Fig. 5d,e and Supplementary Fig. 14a–c). Of 
these, we selected the gene DEPTOR, whose expression we sought to 
characterize in single cells in our Carbon Copy by RNA FISH (Fig. 5f). 
(We also chose another gene, MGP, whose expression was similarly 
highly elevated but only in one replicate; Supplementary Fig. 15.)

For single-cell analysis, we performed RNA FISH on the 
Carbon Copies (half treated with DOT1L inhibitor and half 
treated with vehicle control) for ten total genes: six priming mark-
ers, SOX10, MITF, DEPTOR and MGP. We scanned through ~2 
million cells to find those expressing the targeted barcodes, iden-
tifying 850 such cells. Using UMAP, we visualized the expression 
profiles of cells from the vehicle control-treated Carbon Copy, 

Fig. 5 | Rewind identifies a distinct subpopulation of cells that require DOT1L inhibition to become vemurafenib resistant. a, Experimental approach 
for identifying the subpopulation of cells that require DOT1L inhibition to become vemurafenib resistant. These experiments began with approximately 
400,000 WM989 A6-G3 cells transduced at an MOI of ~1.0 and allowed to divide for 10–11 d (~3–4 population doublings) before splitting the culture into 
two groups. We treated one group with 4 μM DOT1L inhibitor (pinometostat) and the other with vehicle control (DMSO) for another 6 d (~2–3 population 
doublings). We then split each group again, fixing half as our ‘Carbon Copies’ and treating the other half with 1 μM vemurafenib for ~2.5 weeks. After 
vemurafenib treatment, we extracted gDNA from the remaining cells for barcode sequencing. Note that, in principle, DOT1L inhibition might alter cell state 
(color) even before vemurafenib treatment, which is not depicted here for clarity. b, For each barcode identified by sequencing, we plotted its abundance in 
resistant cells pre-treated with DOT1L inhibitor versus its abundance in resistant cells pre-treated with vehicle control. This comparison revealed a subset 
of barcodes with a greater relative abundance in resistant cells pre-treated with DOT1L inhibitor (blue points). We used these barcodes to design RNA 
FISH probes targeting cells that required DOT1L inhibition to become vemurafenib resistant. A separate set of barcodes were highly abundant in resistant 
cells both with or without DOT1L inhibition (orange points), suggesting that these cells were destined to become resistant whether or not they were 
pre-treated with DOT1L inhibitor. We used these barcodes to design RNA FISH probes targeting primed cells not requiring DOT1L inhibition to become 
resistant. The dashed, diagonal line demarcates the 200 barcodes with the largest increase in abundance with DOT1L inhibitor pre-treatment. c, Using 
these probes, we labeled and sorted cells requiring DOT1L inhibition to become vemurafenib resistant (blue), primed cells not requiring DOT1L inhibition 
(orange) and non-primed cells (gray) from Carbon Copies for RNA sequencing. We separately sorted cells from Carbon Copies treated with DOT1L 
inhibitor and Carbon Copies treated with vehicle control (two biological replicates each). d, To identify markers of cells that require DOT1L inhibition 
to become resistant, we used DESeq2 to compare their gene expression to non-primed cells (x axis) and primed cells not requiring DOT1L inhibition (y 
axis). In this analysis, we included cells sorted from all Carbon Copies (treated with DOT1L inhibitor or vehicle control) from two biological replicates 
and included DOT1L inhibitor treatment as a covariate in estimating log2 fold changes. Red points correspond to genes differentially expressed in one or 
both comparisons (Padj ≤ 0.1 and log2 fold change ≥ 1). e. Expression of DEPTOR in TPM in the subpopulations isolated in b. Points indicate TPM values 
for experimental replicates. f, We used the same probe sets as in b to identify cells in situ in Carbon Copies fixed before vemurafenib treatment and then 
measured single-cell expression of DEPTOR, MGP, SOX10, MITF and six priming markers by RNA FISH. Shown is the expression of DEPTOR in the indicated 
cell populations identified in the Carbon Copies treated with vehicle control. Each point corresponds to an individual cell. Above each box plot is the 
proportion of cells with levels of DEPTOR RNA above the indicated threshold (~95th percentile in non-primed cells). g, We applied the UMAP algorithm 
to visualize the single-cell expression data from in situ Carbon Copies. These plots include 423 cells from the vehicle control-treated Carbon Copy. In the 
upper-left plot, points are colored according to the fate of each cell as determined by its barcode, and the number of cells corresponding to each fate are 
labeled separately above the two largest groupings. For the remaining plots, points are colored by the expression level of the indicated gene in that cell. 
These data correspond to one of two biological replicates (see Supplementary Fig. 14 for the replicate data).
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overlaying the information provided by barcode RNA FISH to 
label cells by their fates (Fig. 5g). We found that the primed cells 
that did not require DOT1L inhibition to become resistant sepa-
rated into a distinct grouping that, as before, expressed the pre-
viously identified markers, such as AXL and EGFR (Fig. 5g and 
Supplementary Fig. 14f,g). We initially expected the expression of 
these genes to also be elevated in the cells that required DOT1L 
inhibition to become resistant, but perhaps to a lesser extent, 
reflecting a ‘subthreshold’ state that was unable to survive vemu-
rafenib treatment alone. Contrary to this expectation, the expres-
sion profile of this new subpopulation was far more similar to the 
general population of cells that were not primed for resistance 
in either condition (Fig. 5g). Although many of these cells were 
grouped together with the non-primed cells in the UMAP projec-
tion, there was a distinct grouping nearby that consisted almost 
exclusively of cells that were primed for resistance only upon 

DOT1L inhibition. These cells specifically expressed high levels 
of DEPTOR, along with slightly elevated levels of EGFR and lower 
levels of MITF, but showed no differences in the expression lev-
els of the other genes measured compared with non-primed cells 
(Fig. 5g and Supplementary Fig. 14f–h). (Cells requiring DOT1L 
inhibition for priming were also enriched for MGP in a separate 
replicate experiment; Supplementary Fig. 15.) Taken together, the 
identification of a unique molecular state marked by DEPTOR 
expression in the overall absence of established priming markers 
highlights the existence of a qualitatively distinct rare cell state 
that can lead to drug resistance when a DOT1L inhibitor is given 
before vemurafenib. It is noteworthy that many of the primed cells 
that require DOT1L inhibition to become vemurafenib resistant 
expressed neither DEPTOR nor established markers (for example, 
AXL, NGFR and ITGA3), and further work is needed to identify 
features that better distinguish this rare subpopulation.
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Although this subpopulation expressed low levels of established 
priming markers initially, we wondered whether DOT1L inhibi-
tion pushed these cells toward a molecular state more similar to the 
conventional primed cell state (that is, high levels of AXL, EGFR and 
NGFR; Fig. 6a). To this end, we compared the transcript levels as 
measured by RNA sequencing from cells sorted from Carbon Copies 
treated with either DOT1L inhibitor or vehicle control (Fig. 6b). As 
expected, with vehicle control, cells that require DOT1L inhibition 
to become vemurafenib resistant clustered separately from primed 
cells that do not require DOT1L inhibition (Fig. 6c,d). With DOT1L 
inhibition, these two populations appeared modestly more similar 
transcriptionally; however, they remained predominantly distinct 
(Fig. 6c,d). RNA FISH on cells that require DOT1L inhibition to 
become resistant revealed that DOT1L inhibition did not increase 
expression of established priming markers and, if anything, mod-
estly decreased their expression (Fig. 6e,f and Supplementary Fig. 
16a,b). Overall, these gene expression differences between primed 
subpopulations both before and after DOT1L inhibition suggest 
that DOT1L inhibition does not simply convert cells into the previ-
ously established primed cell state capable of surviving vemurafenib 
treatment, but rather, it might reveal a separate route to resistance.

Discussion
Here we have revealed the existence of a rich set of rare subpopula-
tions within seemingly homogenous cells, several of which can lead 
to phenotypically distinct fates. Despite the population having a 
clonal origin and being grown in homogeneous cell culture condi-
tions, these subpopulations spontaneously emerge via transient cell 
state fluctuations that can persist for several cell divisions. It remains 
unclear how precisely these subpopulations arise, although, intrigu-
ingly, they might arise from network interactions between multiple 
regulatory factors28. It is also unclear how these states revert to the 
population baseline. In this study, we observed states persisting for 
over 5–6 generations, whereas previous reports based on sorting 
by individual markers suggested reversion on shorter time scales6. 
It is possible that the more pure primed population identified by 
Rewind can persist longer than impure populations, which might 
contain transient intermediates.

For the variability that is associated with priming, it is tempting 
to imagine single axes of variability for both state and fate, in which 
cells that have fluctuated further up a putative primed state hierar-
chy lead to different degrees of resistance. However, our results show 
that, even for the simple case of heterogeneity in the size of resistant 
clones, expression of the primed-cell markers AXL/ITGA3/EGFR 
and WNT5A/MMP1/NGFR varied along at least two axes prior to 
the addition of drug, with each axis being associated with either 

the low-abundance or high-abundance clones. Further use of tools 
like Rewind, potentially in combination with transcriptome-scale 
RNA FISH or single-cell RNA sequencing, may help to fully reveal 
the structure of these fluctuations and consequent subpopulations. 
Resistant cell fates likely have similarly complex modes of variabil-
ity, and our results suggest that these modes likely have origins in 
molecular variability in the initial cell state. The nature of these 
mappings might help guide therapy, and it may be important to 
consider the multiple different initial primed cellular states that give 
rise to resistant cells following distinct treatments, as highlighted by 
our DOT1L inhibition results.

A critical consideration in developing Rewind was minimiz-
ing contamination from ‘off-target’ non-primed cells. These 
cells could in principle come from probes falsely generating  
signal in non-primed cells or technical limitations of FACS. 
These contaminating cells can dramatically dilute measurements 
of gene expression specific to the targeted, rare subpopulations 
(Supplementary Fig. 1d,e). We found that barcode detection by 
FACS was far more prone to contamination than barcode detec-
tion by imaging, which had very high precision (estimated to be 
~97%; Supplementary Fig. 1f–h); indeed, we believe that it is for 
this reason that we observe larger magnitude differences by RNA 
FISH than by RNA sequencing of sorted populations, particularly 
for markers downregulated in primed cells such as SOX10 and 
MITF. However, despite these concerns, we discovered and vali-
dated the priming markers ITGA3 and AXL, while also identify-
ing previously known markers such as NGFR and EGFR. We also 
found that experiment-to-experiment technical variability was 
relatively minimal: by imaging, we did not see much difference in 
off-target signal across different probe sets (with rare exceptions 
of ‘dirty’ probes), and barcode sequencing of cDNA from sorted 
subpopulations labeled with different probe sets suggested similar 
levels of enrichment (Fig. 1, Supplementary Fig. 12 and a notable 
exception in Supplementary Fig. 6).

The global transcriptional profiles afforded by RNA sequenc-
ing of rare primed cells allowed us to ask what pathways  
might be active in these cells beyond ones such as growth factor 
receptor signaling, which has already been associated with vemu-
rafenib resistance in melanoma6,25,29–31. One of the strongest signa-
tures was the upregulation of cell adhesion proteins and structural 
components of the ECM. Such signatures suggest the possibility 
that control of cell state and behavior might have both a compo-
nent that is autonomous to the cell itself and a component that 
is instructed by the ECM. Future research may help reveal if and 
how the ECM is able to influence primed cellular states and, conse-
quently, therapy resistance.

Fig. 6 | DOT1Li inhibition enables a new subpopulation of cells to survive vemurafenib treatment without converting them into the known primed 
cell state. a, We asked whether DOT1L inhibition enables a new subpopulation of cells to survive vemurafenib treatment by converting them into the 
previously established primed cell state or whether these cells become resistant via a possible alternative path. b, We used Rewind to isolate and perform 
RNA sequencing on cells requiring DOT1L inhibition to survive vemurafenib treatment (blue), cells not requiring DOT1L inhibition (orange) and non-primed 
cells (gray) sorted from both Carbon Copies treated with DOT1L inhibitor (red outline) and Carbon Copies treated with vehicle control (gray outline) 
(two replicates each sorted for RNA sequencing). c, Heat map displays expression of established priming markers across sorted subpopulations from 
control and DOT1L inhibitor pre-treated Carbon Copies. Dendrogram shows hierarchical clustering of samples by expression values. We defined priming 
markers as protein-coding genes differentially expressed (Padj ≤ 0.1 and absolute(log2 fold change) ≥ 1) in primed cells not requiring DOT1L inhibition 
versus non-primed cells isolated from the Carbon Copy treated with vehicle control. d, Using expression of priming markers as in c, we performed principal 
component (PC) analysis on primed and non-primed cell populations. The red outline indicates samples sorted from the Carbon Copy treated with DOT1L 
inhibitor. e, We used the same probes as in b to identify cell populations in situ in Carbon Copies treated with DOT1L inhibitor or vehicle control. We then 
used RNA FISH to measure single-cell expression of several established priming markers and visualized the relationship in gene expression between single 
cells using the UMAP algorithm with the first six principal components. This analysis included expression data from 850 single cells. Points are colored 
according to the fate of each cell as determined by its barcode, and the number of cells corresponding to each fate are labeled above the largest groupings. 
f, Plotted are single-cell expression data for six priming markers, MITF and SOX10 in cells that require DOT1L inhibition to become vemurafenib resistant. 
Each point corresponds to an individual cell. Below each box plot, we indicate whether the cells are from the Carbon Copy treated with DOT1L inhibitor (+) 
or vehicle control (−). The corresponding data for non-primed cells and primed cells not requiring DOT1L inhibition are shown in Supplementary Fig. 16. 
These data correspond to one biological replicate.
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There were also several other expression signatures active in 
distinct subpopulations of cells. For instance, DEPTOR expres-
sion marked one set of primed cells. Although DEPTOR might  
not have any functional role in priming, it is known that DEPTOR 
inhibits mTOR signaling, which might relieve negative feed-
back on PI3K/Akt signaling and, in turn, bypass the inhibition of  

BRAF signaling32. Further work is needed to establish such  
potential mechanisms.

In this study, single-cell analysis of ERK signaling revealed 
that individual cells vary dramatically in ERK activity after vemu-
rafenib treatment, with rare cells reactivating ERK to levels similar 
to untreated cells. Rewind allowed us to connect these near-term 
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single-cell signaling dynamics in rare cells to both their initial 
transcriptional state and their ultimate resistant fate. These con-
nections revealed that the primed melanoma cells that go on to 
survive vemurafenib treatment both had higher levels of phos-
phorylated ERK soon after treatment and expressed multiple 
receptor tyrosine kinases along with their cognate ligands. Of 
note, other groups have demonstrated that by inhibiting MAPK 
signaling, vemurafenib treatment can relieve negative feedback 
on growth factor receptors, thereby allowing ERK reactivation via 
BRAFV600E -independent routes27,33. Thus, it is tempting to specu-
late that transcriptional state of primed cells enables autonomous 
ERK reactivation.

We chose to focus on the priming of melanoma cells toward dif-
ferent fates after targeted therapy treatment. However, there are sev-
eral examples in which non-genetic differences can lead rare cells to 
undergo important transformations, including the induction of plu-
ripotency in otherwise terminally differentiated cells34 and transdif-
ferentiation of one cell type into another. Application of techniques 
like Rewind in these contexts may reveal universal characteristics of 
priming and reprogramming.
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Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
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author contributions and competing interests; and statements of 
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Methods
Barcode lentivirus library construction. Starting with the LRG2.1T plasmid, 
kindly provided by Junwei Shi, we derived a lentivirus vector backbone for Rewind 
by removing the U6 promoter and single guide RNA scaffold and then inserting 
a spacer sequence flanked by EcoRV restriction sites after the stop codon of GFP. 
For the barcode insert, we ordered PAGE-purified Ultramer oligonucleotides 
(IDT) containing ‘WSN’ repeated for 100 nucleotides (W=A or T, S=G or C, 
N=Any) flanked by 30 nucleotides homologous to the vector insertion site for 
Gibson Assembly (see Supplementary Table 1 for barcode insert sequence). We 
then digested the vector backbone overnight with EcoRV (NEB) and gel purified 
the linearized vector. We combined 100 ng of linearized vector, 1.08 μl of barcode 
oligo insert (100 nM in nuclease-free water), 10 μl of Gibson Assembly Master Mix 
(NEB E2611) and nuclease-free water to a final volume of 20 μl and then incubated 
the reaction at 50 °C for 1 h. We next column purified the assembled plasmid 
using Monarch DNA cleanup columns (NEB) according to the manufacturer’s 
protocol and then electroporated 2 μl of the column-purified plasmid into Endura 
Electrocompetent Escherichia coli cells (Lucigen) using a Gene Pulser Xcell 
(Bio-Rad) with the following settings: 25 ms pulse length, 10 μF capacitance, 
600 Ω resistance and 1,800 V voltage. We performed six electroporations using 
the same plasmid in parallel. Immediately after electroporation, we added 1 ml 
of pre-warmed (37 °C) recovery media to each electroporation cuvette and then 
transferred the liquid to 1.5-ml microcentrifuge tubes and placed these tubes 
on a shaker at 225 r.p.m. and 37 °C for 1 h. After this recovery, we took 10 μl of 
the culture for plating serial dilutions and transferred the rest to 150–200 ml of 
1× LB Broth containing 100 μg ml−1 of ampicillin. We incubated these cultures 
on a shaker at 225 r.p.m. and 32 °C for 12–14 h and then pelleted the cultures by 
centrifugation and isolated plasmid using the EndoFree Plasmid Maxi Kit (Qiagen) 
according to the manufacturer’s protocol. In some instances, pellets were frozen 
at −20 °C for several days before plasmid isolation. To estimate transformation 
efficiency, we counted colonies on the plated serial dilutions and verified barcode 
insertion by polymerase chain reaction (PCR) from 20–30 colonies per plate. We 
pooled the plasmids from the six separate cultures in equal amounts by weight 
before packaging into lentivirus. This protocol is also available online at https://
www.protocols.io/view/barcode-plasmid-library-cloning-4hggt3w.

Cell lines and culture. We derived the WM989 A6-G3 melanoma cell line by 
twice single-cell bottlenecking the WM989 melanoma cell line kindly provided by 
Dr. Meenhard Herlyn (Wistar Institute)6,35. Similarly, we derived WM983b E9-C6 
by twice single-cell bottlenecking the WM983b melanoma cell line, also provided 
by Dr. Meenhard Herlyn. We verified the identity of these cell lines by DNA STR 
microsatellite fingerprinting at the Wistar Institute.

We cultured both melanoma cell lines in TU2% media consisting of 80% 
MCDB 153, 10% Leibovitz’s L-15, 2% FBS, 2.4 mM CaCl2, 50 U ml−1 of penicillin 
and 50 μg ml−1 of streptomycin and passaged cells using 0.05% trypsin-EDTA. For 
harvesting drug-treated resistant cells, we used 0.1% trypsin-EDTA. For lentivirus 
packaging, we cultured HEK293FT cells in DMEM containing 10% FBS, 50 U ml−1  
of penicillin and 50 μg ml−1 of streptomycin and passaged cells using 0.05% 
trypsin-EDTA.

Lentivirus packaging and transduction. Before plasmid transfection, 
HEK293FT cells were grown to ~90% confluency in six-well plates in DMEM 
containing 10% FBS without antibiotics. For each six-well plate, we added 
80 μl of PEI to 0.5 ml of Opti-MEM (Thermo Fisher Scientific, 31985062) and 
separately combined 7.5 μg of pPAX2 with 5 μg of VSVG and 7.71 μg of the barcode 
plasmid library in 0.5 ml of Opti-MEM and then incubated the solutions at room 
temperature for 5 min. We then mixed the two solutions together with vortexing 
and incubated the combined solution at room temperature for 15 min. We added 
184 μl of the plasmid-PEI solution dropwise to each well of the six-well plate. After 
6–8 h, we aspirated the media from the cells, washed the cells once with 1× DPBS 
and then added fresh culture media (DMEM containing 10% FBS and antibiotics). 
The next morning, after confirming that most cells were GFP positive, we aspirated 
the media, washed the cells once with 1× DPBS and then added 1 ml of TU2% 
to each well. Approximately 12 h later, we transferred the virus-laden media to 
a Falcon tube and added another 1 ml of of TU2% to each well. We collected 
virus-laden media twice more over the next ~16 h and, during this time, stored the 
collected media at 4 °C. After the final collection, we filtered the virus-laden media 
through a 0.22-μm PES filter and then stored 1–2-ml aliquots at −80 °C.

To transduce WM989 A6-G3 and WM983b E9-C6 cells, we added freshly 
thawed (on ice) virus-laden media and polybrene (final concentration, 4 μg ml−1) 
to dissociated cells and then plated the cells onto six-well plates (100,000 cells in 
2 ml of media per well) and centrifuged the plate at 1,750 r.p.m. (517g) for 25 min. 
We incubated the cells with virus for 6–8 h and then removed the media, washed 
the cells once with 1× DPBS and added 3 ml of TU2% to each well. The next day, 
we passaged the cells to 10-cm dishes (one six-well plate into three 10-cm dishes). 
For WM989 A6-G3, we split barcoded cells into Carbon Copy and separate 
vemurafenib treatment groups 11 d after transduction for sort experiments (Fig. 
1) or 10 d after transduction for in situ experiments (Figs. 2–4) unless otherwise 
specified. These time points correspond to 4–5 population doublings since 
transduction. For WM983b E9-C6, we split barcoded cells into Carbon Copy and 

separate vemurafenib treatment groups 7 d after transduction (also corresponding 
to 4–5 population doublings) unless otherwise specified. We cultured in situ 
Carbon Copies for 4 d before fixation to more easily identify clusters of cells 
expressing targeted barcodes.

Simulations of experimental conditions used for Rewind. As described above, 
we expanded barcoded cells for at least four population doublings before splitting 
off the Carbon Copy and drug-treatment groups for Rewind. As such, there were, 
on average, ~16 closely related cells for each barcoded clone before the split. For 
a 50:50 split, the probability that at least one of 16 cells ends up in both groups 
is ~99.997%, or, in other words, fewer than 0.002% of clones are expected to be 
‘missing’ from either group. However, given the unavoidable variability in cell 
growth, it is likely that some clones will have divided fewer than four times, and 
these clones are more likely to be entirely missing from the Carbon Copy. (We 
note that we do not care about clones that are missing from the drug treatment 
group because they will not become resistant colonies, and their barcodes will not 
be selected for probe design). To empirically estimate the proportion of clones 
present in our Carbon Copy, we sequenced barcode genomic DNA (gDNA) from 
barcoded WM989 A6-G3 after ~4 population doublings and then computationally 
‘split’ the sequenced barcodes into two halves, after first weighting each barcode by 
its read count and scaling the average read count to 16. Finally, we calculated the 
proportion of barcodes present in both halves. Simulating this procedure 10,000 
times, we found that ~92.3–92.6% of barcodes were present in both halves, and 
<4% of barcodes were ‘missing’ from the simulated Carbon Copy.

We also note that, to eliminate spurious barcodes arising due to PCR or 
sequencing errors, we merged highly similar barcode sequences as described 
further below (see ‘Computational analyses of barcode sequencing data’) and 
filtered barcodes with fewer than five unique reads. The simulations were robust to 
a range of read count thresholds ≥2.

We used the same barcode sequencing data to simulate the ‘heritability split 
experiment’ for Supplementary Fig. 3d. In this case, we randomly sampled 200 
barcodes twice (without replacement and weighting each barcode by its read 
count) and then calculated the proportion of barcodes shared between the two 
samples. We performed the same simulation for WM983b E9-C6 (Supplementary 
Fig. 6b) using sequencing data from barcoded WM983b E9-C6 grown for ~4 
population doublings.

The scripts used for these simulations are available on Dropbox at https://www.
dropbox.com/s/p5t9onmezasmtty/heritabilitySplitWM989.R?dl=0.

FACS. To isolate ITGA3-High WM989 A6-G3, we first trypsinized and pelleted 
eight confluent 10-cm plates, washed once with 1× DPBS containing 0.1% BSA 
(0.1% BSA-PBS) and then split the cells into two equal pellets. We resuspended 
each pellet in 0.4 ml of 0.1% BSA-PBS containing 1:200 anti-ITGA3 antibody 
(DSHB clone P1B5 stock concentration, 354 μg ml−1) and then incubated on 
ice for 1 h. After primary incubation, we pelleted the cells, washed twice with 
~5 ml of 0.1% BSA-PBS and then resuspended cells in 0.16 ml of 0.1% BSA-PBS 
containing 1:500 anti-mouse FAb2 secondary antibody conjugated to Alexa Fluor 
488 (Cell Signaling, 4408) and incubated on ice for 30 min. Finally, we pelleted the 
cells, washed twice with 0.1% BSA-PBS and then resuspended the pellet in 0.1% 
BSA-PBS containing 100 ng ml−1 of DAPI and proceeded with FACS on a MoFlo 
Astrios (Beckman Coulter). After gating for singlets and live cells, we collected 
15,000 events from the brightest 0.3–0.4% ITGA3-High gate and equal numbers 
from the dimmest ~99% ITGA3-Low gate. We plated two-thirds of the sorted cells 
onto two-well glass-bottom chamber plates (Nunc Lab-Tek 155380) for treating 
with vemurafenib (see below) and the rest on a separate two-well glass-bottom 
chamber plate for verifying ITGA3 expression by single-molecule RNA FISH.

We followed a similar procedure for isolating AXL-High WM983b E9-C6, 
starting with ten 10-cm dishes split into two equal cell pellets, performing all 
incubations and washes with 1% BSA-PBS and staining with 1:50 primary 
antibody (goat anti-human AXL AF154 from Novus Biologicals) and 1:60 
secondary antibody (bovine anti-goat conjugated to Alexa Fluor 647; Jackson 
ImmunoResearch, 805-605-180). After gating for singlets and live cells, we 
collected 20,000 events from the brightest ~0.3% AXL-High gate and equal 
numbers from the dimmest ~20% AXL-Low gate and then plated cells onto 
two-well glass-bottom plates (10,000 cells per well) for vemurafenib treatment or 
RNA FISH as above.

Drug treatment experiments. We prepared stock solutions of 4 mM vemurafenib 
(PLX4032, Selleck Chemicals, S1267), 10 mM pinometostat (Selleck Chemicals, 
S7062), 100 μM trametinib (Selleck Chemicals, S2673) and 10 mM dabrafenib 
(Selleck Chemicals, S2807). We prepared all stock solutions in DMSO and divided 
into small aliquots stored at −20 °C to minimize freeze–thaw cycles. For drug 
treatment experiments, we diluted the stock solutions in culture medium to a 
final concentration of 1 µM for vemurafenib, 4 µM for pinometostat, 10 nM for 
trametinib and 1 µM for dabrafenib unless otherwise specified.

For Rewind experiments in WM989 A6-G3, we treated cells with vemurafenib 
for 3 weeks, replacing media containing drug every 3–4 d. After vemurafenib 
treatment, we trypsinized and collected all remaining cells, washed cells once 
with 1× DPBS and then pelleted and froze 90% of the cells at −20 °C until gDNA 
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extraction and barcode sequencing as described below. We fixed the remaining 10% 
of vemurafenib-resistant cells for barcode RNA FISH, FACS and RNA sequencing as 
described below and in Supplementary Fig. 5a. For DOT1L inhibitor pre-treatment, 
we treated cells with 4 µM pinometostat for 6 d, replacing media on day 3 and 
again when splitting off the Carbon Copy on day 5. After the ITGA3 sort, we fixed 
WM989 A6-G3 cells after 18 d of vemurafenib treatment to more easily quantify 
numbers of colonies. For Rewind experiments in WM983b E9-C6, we treated cells 
with vemurafenib for 4 weeks, replacing media containing drug every 3–4 d. Cells 
surviving drug treatment were harvested and frozen as described above.

Cell quantification. After drug treatment experiments, we fixed cells by 
incubation for 10 min in 3.7% formaldehyde (Sigma-Aldrich, F1635) diluted in 1× 
PBS, followed by two washes with 1× PBS and then overnight permeabilization 
at 4 °C with 70% ethanol. We stained nuclei by incubation in 2× SSC containing 
50 ng ml−1 of DAPI and then imaged most of each well via a tiling scan at ×20 
magnification. To quantify cell and colony numbers, we used custom MATLAB 
software to stitch the tiled images, identify nuclei and manually circle individual 
resistant colonies. Software and scripts used for these analyses can be found at 
https://github.com/arjunrajlaboratory/colonycounting_v2 and https://www.
dropbox.com/sh/p279h7mak0rrklx/AACyM_IiVP3prkjdDmd6HqOca?dl=0.

Barcode library preparation and sequencing. We isolated gDNA from 
barcoded cells using the QIAmp DNA Mini Kit (Qiagen, 51304) according to the 
manufacturer’s protocol. We performed targeted amplification of the integrated 
barcode vector using custom primers containing Illumina adapter sequences, 
unique sample indexes, variable-length staggered bases and six random nucleotides 
(‘UMI’; NHNNNN), which, despite not uniquely tagging barcode DNA molecules, 
appeared to modestly increase reproducibility between replicate libraries and 
normalize read counts (see Supplementary Table 2 for a complete list of primers). 
For each sample, we performed multiple PCR reactions (using 20–40% of the 
total isolated gDNA) each consisting of 1 μg of gDNA, 500 nM primers, 25 μl of 
NEBNext Q5 HotStart HiFi PCR Master Mix and nuclease-free water to a final 
volume of 50 μl. We ran the reactions on a thermal cycler with the following 
settings: 98 °C for 30 s, followed by N cycles of 98 °C for 10 s and then 65 °C for 
40 s and, finally, 65 °C for 5 min. After the PCR, we purified libraries using 35 μl 
(0.7×) of AMPure XP magnetic beads with two 80% ethanol washes followed 
by final elution in 20 μl of 0.1× TE (1 mM Tris HCl pH 8.0 and 100 μM EDTA). 
Purified libraries from the same sample were pooled, quantified using the Qubit 
dsDNA High Sensitivity Assay (Thermo Fisher Scientific) and then sequenced 
on a NextSeq 500 using 150 cycles for read 1 and eight cycles for each index. For 
barcoding experiments not requiring RNA FISH probe design, shorter reads (75 
cycles) provided sufficient information to identify unique barcodes.

To reduce PCR amplification bias, we determined the number of cycles (‘N’) 
for each sample by first performing a separate quantitative PCR (qPCR) reaction 
and selecting the number of cycles needed to achieve one-third of the maximum 
fluorescence intensity. We included 0.25 μl of 100× SYBR Green I (10,000× diluted 
1:100 in 10 mM Tris pH 8.0, Invitrogen, S7563) per 25 μl of qPCR reaction and, 
when possible, performed multiple reactions with serial dilutions of gDNA (1:4 
and 1:16). For experiments with multiple similar samples (same multiplicity 
of infection (MOI) and same treatment), we performed qPCR on one of these 
samples and extrapolated ‘N’ to the rest.

To test reproducibility of our barcode quantification, for a subset of samples 
we prepared duplicate libraries with separate indexes and compared barcode read 
counts among these technical replicates. As shown in Supplementary Fig. 2, we 
found a high correlation (>95%) in barcode abundance among these technical 
replicates.

Computational analyses of barcode sequencing data. We recovered barcodes 
from sequencing data using custom Python scripts available at https://github.
com/arjunrajlaboratory/timemachine. These scripts search through each read 
to identify sequences complementary to our library preparation primers, and, 
if these sequences pass a minimum length and phred score cutoff, then the 
intervening barcode sequence is counted. In addition to counting total reads for 
each barcode, we also count the number of ‘UMIs’ incorporated into the library 
preparation primers (see above). Although we do not think that these ‘UMIs’ tag 
unique barcode DNA molecules, empirically they appeared to slightly improve the 
correlation in barcode abundance among replicate libraries and were, therefore, 
used for most subsequent analyses. Using the STARCODE software36 (available 
at https://github.com/gui11aume/starcode), we merged highly similar barcode 
sequences (Levenshtein distance ≤ 8), summing the counts and keeping only the 
more abundant barcode sequence.

For selecting barcodes corresponding to resistant colonies, we ranked the 
barcode sequences by counts and then converted the most abundant 100–200 
barcode sequences into FASTA files for probe design, as described below. Barcode 
sequences with ≥30 bases of homology to the vector backbone were excluded for 
concerns of generating non-specific FISH probes (we checked for non-specific 
binding a second time during probe design, as described below).

We selected barcodes corresponding to resistant colonies that require DOT1L 
inhibition using the following criteria: 1) among the most abundant 200 barcodes 

in DOT1L inhibitor pre-treated resistant cells; 2) not among the most abundant 
500 barcodes in the DMSO pre-treated resistant cells; and 3) greatest difference in 
abundance between DOT1L inhibitor pre-treated and DMSO pre-treated resistant 
cells among all barcodes passing criteria 1 and 2. For barcodes corresponding to 
resistant colonies not requiring DOT1L inhibition, we selected sequences that: 1) 
were in the top 200 barcodes in both the DOT1L inhibitor and DMSO pre-treated 
resistant cells and 2) had relatively similar abundances across these two conditions 
(not among the 500 barcodes with the largest difference in abundance).

Barcode RNA FISH probe design. Using FASTA files of selected barcodes, we 
design hybridization chain reaction (HCR) probes using RajLab ProbeDesignHD 
software (code freely available for non-commercial use here: https://github.com/
arjunrajlaboratory/ProbeDesign/). For each barcode sequence, we designed 
two non-overlapping 42mer probes with a target Gibbs free energy for binding 
of −55 (allowable Gibbs free energy [−65, −45]). We excluded probes with 
complementarity to repetitive elements, pseudogenes or the vector backbone 
used to generate the barcode plasmid library. We then split each 42mer probe 
into two 20mer sequences (removing the middle two nucleotides) and appended 
split-initiator HCR sequences using custom Python scripts (see Supplementary 
Table 3 for sequences)37. For each 20mer sequence, we measured the maximum 
complementarity to the vector backbone and other barcodes present in the 
sample to manually exclude probes with potential for non-specific hybridization. 
We ordered the final probe sequences synthesized from IDT in picomole-scale 
384-well plates. Finally, we resuspended barcode HCR probes to 50 μM in 
nuclease-free water and then combined these probes into pools each containing 24 
different barcode probes at a final concentration of 2 μM each.

For ClampFISH, we designed 30mer probes targeting select barcodes 
using RajLab ProbeDesignHD software with a target Gibbs free energy of −40 
(allowable Gibbs free energy [−50, −30]). As above, we excluded probes with 
complementarity to repetitive elements, pseudogenes or the vector backbone. We 
then appended 10mer sequences to the 5′ and 3′ ends of each probe (used for 
subsequent ligation) and ordered the final probe sequences synthesized from IDT 
in picomole-scale 384-well plates. We resuspended barcode ClampFISH probes 
to 100 μM in nuclease-free water and then combined these probes into pools each 
containing 30 different barcode probes. To these pools, we ligated oligonucleotides 
(oligos) containing alkyne and azide modifications at their 5′ and 3′ ends, 
respectively (see Supplementary Table 4 for sequences). For this ligation, we first 
phosphorylated the 5′ ends of each probe set by combining 4 μl of the pooled 
oligos with 1 μl of T4 PNK (NEB), 20 μl of T7 DNA ligase reaction buffer (NEB) 
and 2 μl of nuclease-free water and then incubating at 37 °C overnight. Next, we 
added the alkyne and azide modified oligos along with complementary bridging 
20mer oligos (3 μl each of 400 μM stocks) and heated the reactions to 95 °C for 
5 min and then cooled to 12 °C at a rate of −0.1 °C s−1. After cooling, we added 
1 μl of T7 ligase (NEB) and incubated overnight at room temperature. We purified 
the ligated barcode ClampFISH probes using Monarch DNA Cleanup Columns 
(NEB) according to the manufacturer’s protocol. This protocol for generating 
barcode ClampFISH probes is also available online at https://www.protocols.io/
view/invertedclampfish-ligation-qxwdxpe. We prepared amplifier probes MM2B, 
MM2C, P9B and P9C as described previously38.

RNA FISH. We designed oligonucleotide probe sets complementary to our genes 
of interest using custom probe design software written in MATLAB and ordered 
them with a primary amine group on the 3′ end from Biosearch Technologies 
(see Supplementary Table 5 for probe sequences). For each gene, we pooled their 
complementary oligos and coupled the probe set to Cy3 (GE Healthcare), Alexa 
Fluor 594 (Life Technologies) or Atto647N (ATTO-TEC) N-hydroxysuccinimide 
ester dyes. We performed single-molecule RNA FISH as described in ref. 39 and 
ref. 6 for multiple cycles of hybridization. We aspirated media from adherent cells, 
washed the cells once with 1× PBS and then incubated the cells in fixation buffer 
(3.7% formaldehyde in 1× PBS) for 10 min at room temperature. We next aspirated 
the fixation buffer, washed samples twice with 1× PBS and then added 70% ethanol 
and stored samples at 4 °C. For hybridization, we first rinsed samples with washing 
buffer (10% formamide in 2× SSC) and then applied the RNA FISH probes 
in hybridization buffer (10% formamide and 10% dextran sulfate in 2× SSC). 
We covered samples with coverslips and then hybridized samples overnight in 
humidified containers at 37 °C. The next morning, we washed samples 2 × 30 min 
with washing buffer at 37 °C, adding 50 ng ml−1 of DAPI to the second wash to 
stain the nuclei. After these washes, we rinsed samples once with 2× SSC and 
then added new 2× SSC and proceeded with imaging. To strip RNA FISH probes, 
we incubated samples in stripping buffer (60% formamide in 2× SSC) for 20 min 
on a hot plate at 37 °C, washed samples 3 × 15 min with 1× PBS on a hot plate at 
37 °C and then returned samples to 2× SSC. After stripping RNA FISH probes, 
we re-imaged all previous positions and excluded dyes with residual signal from 
subsequent hybridization.

Barcode RNA HCR. We adapted HCR v3.0 (ref. 37) for barcode RNA FISH as 
follows. We used 1.2 pmol each of up to 240 barcode RNA FISH probes per 
0.3 ml of hybridization buffer. Our primary hybridization buffer consisted of 30% 
formamide, 10% dextran sulfate, 9 mM citric acid pH 6.0, 50 μg ml−1 of heparin, 1× 
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Denhardt’s solution (Life Technologies, 750018) and 0.1% Tween-20 in 5× SSC. For 
primary hybridization, we used 100 μl of hybridization buffer per well of a six-well 
plate, covered the well with a glass coverslip and then incubated the samples in 
humidified containers at 37 °C for 6 h. After the primary probe hybridization, we 
washed samples 4 × 5 min at 37 °C with washing buffer containing 30% formamide, 
9 mM citric acid pH 6.0, 50 μg ml−1 of heparin and 0.1% Tween-20 in 5× SSC. 
We then washed the samples at room temperature 2 × 5 min with 5× SSCT (5× 
SSC + 0.1% Tween-20) and then incubated the samples at room temperature for 
30 min in amplification buffer containing 10% dextran sulfate and 0.1% Tween-
20 in 5× SSC. During this incubation, we snap-cooled individual HCR hairpins 
(Molecular Instruments) conjugated to Alexa Fluor 647 (Alexa647), Alexa Fluor 
594 (Alexa594) or Alexa Fluor 546 (Alexa546) by heating to 95 °C for 90 s and then 
immediately transferring to room temperature to cool for 30 min concealed from 
light. After these 30 min, we resuspended and pooled the hairpin in amplification 
buffer to a final concentration of 6 nM each. We added the hairpin solution to 
samples along with a coverslip and then incubated samples at room temperature 
overnight (12–16 h) concealed from light. The next morning, we washed samples 
5 × 5 min with 5× SSCT containing 50 ng ml−1 of DAPI, added SlowFade anti-fade 
solution (Life Technologies, S36940) and a coverslip and then proceeded with 
imaging. To remove fluorescent signal for subsequent rounds of RNA FISH or 
immunofluorescence, we photobleached samples on the microscope or stripped 
HCR hairpins as described above for RNA FISH probes. We used this modified 
HCR v3.0 protocol for labeling barcode RNA in all experiments except those 
indicated in Supplementary Fig. 8, which relied on the ClampFISH protocol 
described below.

For performing HCR in suspension, we adapted the published protocol37 
as follows. We fixed dissociated cells in suspension by washing the cells with 
1× DPBS, resuspending the cell in ice-cold 1× DPBS, adding an equal volume 
of ice-cold fixation buffer (3.7% formaldehyde 1× PBS) and then incubating 
with rotation at room temperature for 10 min. We next pelleted fixed cells by 
centrifugation at 800g for 3 min, washed twice with ice-cold 1× PBS and then 
resuspended in 70% ethanol and stored fixed cells at 4 °C. For primary probe 
hybridization, we used 0.5 ml of hybridization buffer containing 4 nM of each 
barcode RNA FISH probe and incubated samples using the same conditions as 
described above. After primary probe hybridization, we washed samples 4 × 10 min 
with 0.5 ml of washing buffer and then 2 × 10 min with 0.5 ml of 5× SSCT. We 
next incubated samples for 30 min in amplification buffer and snap-cooled HCR 
hairpins as described above. For amplification, we used 15 nM final concentration 
of each HCR hairpin and incubated samples at room temperature overnight 
concealed from light. After amplification, we washed samples six times with 5× 
SSCT and then proceeded with FACS. In between hybridizations and washes, we 
pelleted cells by centrifugation at 400g for 5 min and used low-molecular-weight 
dextran sulfate (Sigma-Aldrich, D4911) in hybridization and amplification buffers 
to improve pelleting.

We note that the final hairpin concentrations used in these experiments are 
four-fold to ten-fold lower than the manufacturer’s protocol, which we optimized 
to reduce non-specific amplification while still enabling sensitive barcode RNA 
detection at ×20 magnification. At the same time, we have noticed lot-to-lot 
variation in HCR hairpins purchased from Molecular Instruments, with each lot 
requiring some testing and optimization for use with Rewind. Finally, we found 
that hybridization and wash buffers without citric acid, heparin, Denhardt’s 
solution or Tween-20 (that is, using only SSC, formamide and dextran sulfate) 
appeared to work as well as the manufacturer’s recommended buffers for barcode 
RNA HCR, and we used these minimal buffers for barcode detection before 
immunofluorescence (Fig. 3).

Barcode RNA ClampFISH. For Supplementary Fig. 8, we adapted the published 
ClampFISH protocol38 for labeling barcode RNA as follows. We generated modified 
primary probes and amplifier probes as described in ‘Barcode RNA FISH probe 
design’. For hybridization, we rinsed fixed samples with washing buffer containing 
40% formamide in 2× SSC and then applied the primary ClampFISH probes in 
primary hybridization buffer containing 40% formamide, 10% dextran sulfate, 
1 mg ml−1 of yeast transfer RNA (tRNA) (Invitrogen, 15401029), 0.02% BSA and 
100 μg ml−1 of sonicated salmon sperm DNA (Agilent, 201190-81) in 2× SSC. 
We included up to 180 ClampFISH probes targeting up to 60 different barcode 
RNA sequences per hybridization (total probe concentration, 125–250 ng μl−1). 
We added coverslips to samples and then hybridized for 6–8 h in humidified 
containers at 37 °C. After hybridization, we added wash buffer containing 40% 
formamide in 2× SSC to dislodge coverslips and then replaced the wash buffer and 
incubated the samples for 20 min at 37 °C. We performed a second wash for 20 min 
at 37 °C using buffer containing 20% formamide and 2× SSC and then performed 
the second round of hybridization with MM2B and MM2C amplifier probes in 
amplifier hybridization buffer (20% formamide, 10% dextran sulfate, 1 mg ml−1 
of yeast tRNA and 0.02% BSA, in 2× SSC; final probe concentration, 10 ng μl−1 
each). After the second hybridization, we washed samples 2 × 20 min at 37 °C using 
buffer containing 20% formamide and 2× SSC and then rinsed the sample with 
2× SSC. We then performed the copper(I)-catalyzed azide–alkyne cycloaddition 
(‘click’ reaction) by adding a solution containing 150 μM BTTAA, 75 μM copper 
sulfate, 2.5 mM L-ascorbic acid and 0.1% Triton-X 100 in 2× SSC to each sample 

and incubating at 37 °C for 15–20 min. To prepare this solution, we first combined 
the BTTAA and copper sulfate, added the 2× SSC containing 0.1% Triton-X 
and, lastly, added freshly dissolved L-ascorbic acid (19–20 mg of L-ascorbic acid 
sodium salt dissolved in 1 ml of nuclease-free water). Once the L-ascorbic acid is 
added, we immediately add the solution to our samples. After the click reaction, 
we rinsed samples once with 2× SSC and then washed 1 × 20 min at 37 °C with 
buffer containing 40% formamide in 2× SSC. After this wash, we performed the 
third round of hybridization with P9B and P9C amplifier probes in the amplifier 
hybridization buffer, followed by washes and click and post-click wash as described 
above. We continued with additional amplifier hybridizations (iterating between 
using MM2B+MM2C amplifier probes on even rounds and P9B+P9C amplifier 
probes on odd rounds) and washes, performing the click reaction during every odd 
round (3, 5, 7…).

After the post-click wash for round 7 or round 9, we added RNA FISH 
hybridization buffer (10% formamide and 10% dextran sulfate in 2× SSC) 
containing probes targeting P9B and P9C and coupled to Alexa Fluor 594 and 
Atto647n, respectively (see Supplementary Table 4 for sequences). We hybridized 
these probes overnight in humidified containers at 37 °C and then washed samples 
2 × 30 min with washing buffer (10% formamide and 2× SSC) at 37 °C, adding 
DAPI to the second wash to stain the nuclei. After these washes, we rinsed samples 
once with 2× SSC and then replaced the 2× SSC and proceeded with imaging. To 
remove ClampFISH signal, we stripped dye-coupled probes as described above for 
RNA FISH.

Immunofluorescence. We performed immunofluorescence using primary 
antibodies targeting total ERK (L34F12 Cell Signaling, 4696) and pERK (p44/
p42 ERK D12.14.4E Cell Signaling, 4370). First, we rinsed cells three times with 
5% BSA in PBS (5% BSA-PBS) and then incubated at room temperature for 2 h 
in 5% BSA-PBS containing 1:100 total ERK and 1:200 pERK antibodies. Next, we 
washed the cells 5 × 5 min with 5% BSA-PBS and then incubated the cells at room 
temperature for 1 h in 5% BSA-PBS containing 1:500 donkey anti-mouse secondary 
antibody conjugated to Cy3 (Jackson ImmunoResearch, 715-165-150) and 1:500 
goat anti-rabbit secondary antibody conjugated to Alexa Fluor 594 (Cell Signaling, 
8889). After the secondary incubation, we washed the cells 5 × 5 min with 5% 
BSA-PBS containing 50 ng ml−1 of DAPI and then replaced the wash buffer with 2× 
SSC and proceeded with imaging as described below.

RNA FISH and immunofluorescence imaging. We imaged RNA FISH samples 
on an inverted Nikon TI-E microscope equipped with a SOLA SE U-nIR light 
engine (Lumencor), an ORCA-Flash 4.0 V3 sCMOS camera (Hamamatsu), ×20 
Plan-Apo λ (Nikon MRD00205), ×40 Plan-Fluor (MRH00401) and ×60 Plan-Apo 
λ (MRD01605) objectives and filter sets for DAPI, Cy3, Alexa Fluor 594 and 
Atto647N. For barcode ClampFISH and barcode HCR, we first acquired tiled 
images in a single z-plane (scan) at ×20 or ×40 magnification, and, then, after 
identifying positions containing cells positive for resistant barcodes, we returned to 
those positions to acquire a z-stack at ×60 magnification. For subsequent rounds 
of single-molecule RNA FISH and ERK immunofluorescence, we acquired z-stacks 
at ×60 magnification. For scans, we used a Nikon Perfect Focus system to maintain 
focus across the imaging area.

Image analysis. To identify barcode RNA FISH-positive and GFP-positive cells in 
Supplementary Fig. 1f–h, we used custom MATLAB scripts to first stitch together 
scanned images and then identify individual cells using the DAPI nuclear signal. 
Next, we used a custom graphical user interface (GUI) to zoom in on the stitched 
image, view the barcode RNA FISH (Alexa647) signal and interactively select 
barcode RNA FISH-positive cells. After selecting all barcode RNA FISH-positive 
cells, we repeated the same process with GFP signal to select all GFP-positive 
cells without knowledge of the cells’ barcode RNA FISH status. We then extracted 
the spatial coordinates, barcode RNA FISH status and GFP status for all cells 
and plotted the results using custom R scripts available on Dropbox at https://
www.dropbox.com/sh/u4sibi0fgorzk0p/AACmLLvqf0iY9GlZBzzuVbtTa?dl=0. 
MATLAB scripts for stitching scans and the custom GUI are available at https://
github.com/arjunrajlaboratory/timemachineimageanalysis.

To identify barcode RNA FISH-positive cells for Rewind, we used custom 
MATLAB scripts to stitch, contrast and compress scan images (scripts available 
at https://github.com/arjunrajlaboratory/timemachineimageanalysis) and then 
manually reviewed these stitched images. This review yielded positions containing 
candidate barcode RNA FISH-positive cells that we then re-imaged for verification 
at ×60 magnification in multiple z-planes. If we were uncertain about the 
fluorescence signal in a candidate cell (for example, abnormal localization pattern 
or non-specific signal in multiple channels), we excluded the cell from imaging 
during subsequent rounds of RNA FISH or immunofluorescence.

For quantification of RNA FISH images, we used custom MATLAB software 
available at https://github.com/arjunrajlaboratory/rajlabimagetools. Briefly, 
the image analysis pipeline includes manual segmentation of cell boundaries, 
thresholding of each fluorescence channel in each cell to identify individual RNA 
FISH spots and then extraction of spot counts for all channels and cells. After 
extracting spot counts, we analyzed RNA levels across single cells using custom R 
scripts available at https://www.dropbox.com/sh/u4sibi0fgorzk0p/AACmLLvqf0i
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We tested for enrichment of differentially expressed genes among gene 
ontologies and pathways (KEGG, REACTOME and WikiPathway) using 
WebGestaltR. If a differentially expressed gene was included in one or more 
enriched Gene Ontology term or pathway, we chose a consensus annotation (for 
example, ECM organization and cell migration) for that gene. Otherwise, we 
assigned gene annotations by manual review. Our resulting gene annotation can be 
found in Supplementary Table 8.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All RNA sequencing data generated for this study are available at the Gene 
Expression Omnibus (accession no. GSE161300). Additional sequencing 
and imaging data are available on Dropbox at https://www.dropbox.com/sh/
mmeg3mckrpridu3/AAALBaMLoJsJiQC2-lrVY0Cva?dl=0 and upon reasonable 
request to the corresponding author.

Code availability
Software used to segment cells and quantify RNA spots is available at https://
github.com/arjunrajlaboratory/rajlabimagetools. Software used to stitch, segment 
and quantify scan images of resistant colonies is available at https://github.com/
arjunrajlaboratory/colonycounting_v2. Additional custom image analysis scripts 
are available at https://github.com/arjunrajlaboratory/timemachineimageanalysis. 
The pipeline used for barcode sequencing analysis is available at https://github.
com/arjunrajlaboratory/timemachine.
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from analyses, and, as a result, some plots might contain slightly different numbers 
of points for different markers. For analyses involving dimensionality reduction 
(UMAP) or clustering, we included only cells with data for all assayed markers.
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shown in Fig. 4, we ran the UMAP algorithm on scaled RNA FISH data using the 
first five principal components and setting n_neighbors = 30 and min_dist = 0.3 
(default settings). For the analyses shown in Figs. 5 and 6, we used the first six 
principal components and set min_dist = 0.6 to better visualize the number of cells 
expressing high levels of DEPTOR.

We adapted the RajLabImageTools pipeline for quantifying 
immunofluorescence images. After manually segmenting cells, we used custom 
MATLAB scripts to average fluorescence intensity within cell boundaries for 
each channel and then took the maximum average fluorescence intensity across 
z-planes. We additionally used DAPI signal to automate nuclei segmentation and 
separately quantified cytoplasmic and nuclear immunofluorescence intensity. 
We found qualitatively similar results for both cytoplasmic and nuclear ERK 
immunofluorescence quantification (Supplementary Fig. 8).

For quantification of cell and colony numbers following vemurafenib 
treatment, we used custom MATLAB software available at https://github.com/
arjunrajlaboratory/colonycounting_v2. The analysis pipeline involves stitching the 
tiled DAPI images, manually segmenting individual wells and colonies, identifying 
individual cells based on DAPI signal and then extracting cell counts from the 
entire well and each colony. We analyzed the extracted cell counts using custom R 
scripts available at https://www.dropbox.com/sh/u4sibi0fgorzk0p/AACmLLvqf0iY
9GlZBzzuVbtTa?dl=0. We used a separate MATLAB script (https://www.dropbox.
com/s/xnwtmw8rh8ec3ij/countCellsTimeMachineScans.m?dl=0) to quantify the 
number of cells imaged in our Carbon Copies.

To assign individual primed cells (marked by barcode RNA FISH signal) 
to subclones (Supplementary Fig. 10), we first extracted the spatial position of 
each image in the whole-well scans containing at least one primed cell. We then 
calculated the Euclidean distance between these images and used these distances 
to perform hierarchical clustering. Visual inspection of the clustering revealed a 
clear distance threshold of <2 mm for grouping subclones of closely related (and, 
therefore, neighboring) primed cells; thus, all primed cells within a group were 
assigned to the same subclone. To further check our subclone assignments, we 
manually inspected all barcode RNA FISH images and found that primed cells 
assigned to the same subclone had similar barcode RNA FISH signal intensity and 
intracellular patterns, whereas this signal similarity was not observed for primed 
cells assigned to different subclones. Most primed cells from different subclones 
were at least 7 mm apart, and, for the few cases of primed cells located between 
2 mm and 7 mm apart, we observed that these cells had distinct barcode RNA FISH 
signal patterns consistent with them belonging to separate subclones. This clear 
spatial separation gave us confidence in our ability to accurately assign individual 
cells to particular subclones.

RNA sequencing and analyses. We extracted RNA from fixed cells after barcode 
RNA FISH and sorting using the NucleoSpin total RNA FFPE XS kit (Takara). We 
performed cell lysis and reverse cross-linking at 50 °C for 90 min and otherwise 
followed the manufacturer’s protocol. After RNA extraction, we prepared 
sequencing libraries using the NEBNext single-cell/low-input RNA sequencing 
library preparation kit for Illumina (NEB) and then performed paired-end 
sequencing of these libraries (38 cycles read 1 + 37 cycles read 2) on a  
NextSeq 500 (Illumina). After sequencing, we aligned reads to the human genome 
(assembly 19; hg19) using STAR42 v2.5.2a and counted uniquely mapped reads  
with HTSeq43 v0.6.1.

We performed differential expression analysis in R v3.6.3 using DESeq2 (ref. 
44) v1.22.2 and with data from at least two biological replicates for each sample 
and condition. Biological replicates were sorted on separate days using distinct 
barcode RNA FISH probe sets. We considered a gene to be differentially expressed 
if the comparison between two conditions yielded a log2 fold change of ≥1 or ≤−1 
and adjusted P value (Padj) ≤ 0.1. For determining candidate markers for primed 
cells requiring DOT1L inhibition (Fig. 5), we compared primed and non-primed 
subpopulations sorted from both DOT1L inhibitor and vehicle control Carbon Copies 
and modeled the biological replicate and DOT1L inhibitor treatment as covariates 
in the design formula for DESeq2. We chose to include data from both DMSO- and 
DOT1L-inhibitor-treated Carbon Copies (two replicates each) in the analysis and 
model DOT1L inhibitor treatment as a covariate due to the modest effects of DOT1L 
inhibitor treatment alone on gene expression (Fig. 6e,f, Supplementary Fig. 14d,e and 
Supplementary Fig. 16c,d) and our particular interest in identifying gene expression 
markers that distinguish various subpopulations of primed cells. We performed 
hierarchical clustering and principal component analysis on log2-transformed 
transcripts per million (TPM) values using R v3.6.3.
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