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Plasticity describes the ability of cells to transition from one 
phenotype to another, enabling cells to adapt and survive 
in the face of a variety of stimuli and challenges. Examples 

include regeneration, wound healing and the induction of pluripo-
tency. Plasticity can be decomposed into stimulus-independent and 
subsequent stimulus-dependent phases. The first phase typically 
consists of (often rare) cells within the population being ‘primed’ for 
the cell fate transition. Then, upon the stimulus, these primed cells 
are selectively reprogrammed to adopt the new phenotype. A major 
question in single-cell biology has been determining the molecular 
differences specific to these primed cells and connecting those dif-
ferences to their ultimate fate after the stimulus reprograms them. 
Recent studies have developed the link between cellular priming 
and cell fate that underlies plasticity in a number of contexts1–8. 
However, little is known about pathways that can manipulate the 
fluctuations that drive priming and whether those pathways can 
affect their subsequent fates, leaving potential therapeutic applica-
tions largely unrealized.

Therapy resistance in melanoma is an excellent example of cel-
lular plasticity9,10. Therapies such as vemurafenib that inhibit par-
ticular oncogenic targets often kill most tumor cells, but a few 
remaining cells continue to proliferate, ultimately repopulating 
the tumor. While the mechanisms underlying this therapy resis-
tance often emerge from a genetic mutation, many recent studies, 
both in melanoma and other cancers, suggest a role for nongenetic 
mechanisms driving cellular plasticity, in particular right after the 
application of therapy. Plasticity here refers to the rare cells that are 
transiently primed to survive drug treatment and are then repro-
grammed into a more stably resistant state by the drug itself8,11–21.  

In melanoma, this primed cellular state, which we have also previ-
ously referred to as the pre-resistant cellular state, is often marked 
by transiently high expression of resistance marker genes such as 
EGFR, NGFR and AXL (Fig. 1a, top). Exposure to the drug repro-
grams these cells by converting the transiently primed phenotype 
into a stably drug-resistant phenotype characterized by massive 
changes in signaling and gene expression profiles (Note that if one 
removes drug from stably resistant cells for a period of 3 weeks, the 
cells are still completely resistant upon reexposure14). A notable dif-
ference between this paradigm of resistance and more conventional 
models of drug resistance caused by a mutation is that, while genetic 
mutations largely arise spontaneously, the nongenetic fluctuations 
driving primed states could result from the activity of specific 
biological pathways. Targeting these pathways could potentially 
enhance or inhibit the formation of primed cells in the primed state. 
We wanted to dissect the molecular regulators of priming and deter-
mine how they might affect the overall acquisition of resistance.

CRISPR–Cas9 technology enables genetic screens to identify 
regulators of such molecular processes. For most cell fate tran-
sitions, including therapy resistance, virtually all screens have 
been designed to detect changes to the ultimate fate only—that is, 
changes in the final number of resistant cells, typically measured as 
a proliferation phenotype22–25. However, such screens do not explic-
itly target priming, which may in principle have distinct regulatory 
mechanisms to those of the acquisition of resistance as a whole. 
These mechanisms may then also affect the overall degree of drug 
resistance, but potentially through new, previously undiscovered 
pathways that affect drug resistance in ways not revealed by classi-
cal resistance screens (Fig. 1a, bottom).
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Here we performed pooled CRISPR–Cas9 genetic screens 
designed to capture modulators of priming for drug resistance  
in single melanoma cells. This screen identified several new  
factors that affect the frequency of primed cells in clonal melanoma 

populations and, consequently, resistance to targeted therapies. 
The transcriptome profiles induced by knocking out these fac-
tors revealed a new mechanism that can increase or reduce drug 
resistance by increasing or decreasing the activity of differentiation 
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Fig. 1 | Pooled CRISPR screen design to identify modulators of cellular priming in the context of drug resistance to targeted therapies in melanoma.  
a, In melanoma, the initial molecular profile of a cell (primed (green) versus unprimed (gray)) within an otherwise homogeneous population dictates the 
ultimate fate of the cell (for example, proliferation versus death) when exposed to therapy (top). Changing the number of cells in a given state (bottom) 
can alter the number of resistant colonies that form upon addition of the BrAFV600E inhibitor vemurafenib. b, We designed a pooled CrISPr screen to 
detect modulators of the cellular priming that leads to drug resistance. After transducing a library of sgrnAs and expanding the population, we isolated 
cells with high expression of both nGFr and EGFr, then sequenced the sgrnAs to determine which gene knockouts altered the frequency of these cells. 
Changes in the frequency of a given sgrnA in this population (for example, targets A and C) indicate that these targets may affect the frequency of 
nGFrHIGH/EGFrHIGH cells in the population, and thus may affect the frequency of cellular priming. c, After transducing a population of melanoma cells 
and isolating nGFrHIGH/EGFrHIGH cells (see b), we quantified the frequency of each sgrnA in the resulting population. Our screening scheme used three 
separate pooled sgrnA libraries: one targeting epigenetic domains (top left), another targeting kinases (bottom left) and a final one targeting transcription 
factors (right). We organized the targets within each sgrnA library by biological process; while a given target could fall into several categories, each target 
was assigned to a single group and plotted only once. Each dot represents a sgrnA, grouped by gene target (5–6 sgrnAs per target), with the log2 fold 
change representing the number of times the sgrnA was detected in the sorted population versus an unsorted population of melanoma cells transduced 
with the same library. For display purposes, all sgrnAs with fold changes beyond the axis limits were placed at the edge of the axis as indicated. For 
targets considered ‘hits’ by our rubric (Methods), we labeled the sgrnA dot by the color assigned to that biological process. Dots at the bottom of each 
pane correspond to nontargeting controls (sgrnAs not targeting any loci in the genome) and cell viability controls (for example, proteins required for cell 
survival and proliferation, but not specifically associated with rare-cell behavior). Extended Data Fig. 2 provides details on the effect of these sgrnAs as 
positive and negative editing controls. BMP, bone morphogenetic protein; ErK, extracellular signal-regulated kinase; JnK, c-Jun n-terminal kinase; PI3K, 
phosphatidylinositol 3-kinase; TOr, target of rapamycin.
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pathways, respectively, as opposed to increasing drug resistance by 
decreasing differentiation. Drugs targeting these factors display a 
variety of synergistic effects when coupled with therapy, which can 
be dependent on the relative timing of drug application. Together, 
our results indicate that modulating cellular plasticity can alter 
cell fate decisions and may provide a new avenue for treating drug 
resistance.

Results
CRISPR–Cas9 genetic screens identify factors that affect primed 
cellular states. We wanted to identify factors that affected the fluc-
tuations in cellular state that lead to single cells being primed to be 
drug resistant. We used a clonal BRAFV600E-mutant melanoma cell 
line (WM989-A6-G3) that exhibits resistance behavior in cell cul-
ture14 that is broadly comparable to that displayed in patients14,21,26. 
Phenomenologically, we observe that, upon addition of a roughly 
cytotoxic dose (1 µM) of the BRAFV600E inhibitor vemurafenib14, the 
vast majority of cells die or stop growing, but around 1 in 2,000–
3,000 cells continues to proliferate, ultimately forming a resistant 
colony after 2–3 weeks in culture in vemurafenib14. Before the appli-
cation of drug, there is a rare subpopulation of cells that are primed 
to become resistant14, and these cells are marked by the expression 
of a set of priming marker genes, like NGFR and EGFR. To identify 
modulators of the fluctuations that lead to the formation of this sub-
population of primed cells, we designed a loss-of-function pooled 
CRISPR genetic screen (dubbed the ‘priming screen’) composed of 
~13,000 single guide RNAs (sgRNAs) targeting functionally relevant 
domains of ~2,000 proteins, with around six distinct sgRNAs per 
domain (1,402 transcription factor targets, 481 kinase targets and 
176 epigenetic targets; Supplementary Tables 1–3)27–29. To con-
duct the screen, we stably integrated Streptococcus pyogenes Cas9 
(spCas9) into the WM989-A6-G3 cell line, creating the clonal line 
WM989-A6-G3-Cas9-5a3 (Extended Data Figs. 1 and 2 show a com-
parison to the parental line and validation of spCas9 functionality).

To screen for factors affecting cellular priming, we transduced 
these cells with the pooled library of sgRNAs. To ensure adequate 
sampling of the frequency of rare primed cells, we expanded 
the culture to around 50,000–250,000 cells for each sgRNA, or 
roughly a billion cells in total. We combined magnetic sorting and 
flow cytometry to isolate cells expressing both EGFR and NGFR, 
which are well-validated markers of primed cells: sorting out cells 
expressing each marker produces far more resistant colonies, with 
double-positive cells being even more resistant14,19. (Note that 
these markers may not induce the primed state per  se; indeed, 
inhibition of EGFR did not affect priming14). We sequenced the 
sgRNAs in this sorted subpopulation to determine which ones were 
over- or underrepresented compared to the unsorted population. 
Overrepresentation suggests that knockout of the gene increases 
the frequency of NGFRHIGH/EGFRHIGH cells and vice versa (Fig. 1b). 
We selected ‘hits’ via a series of criteria that ranked candidates into  
confidence tiers (see Methods for selection criteria).

Our screen identified several factors that affect priming. We 
obtained a set of 61 high-confidence targets that affected the fre-
quency of NGFRHIGH/EGFRHIGH cells (Fig. 1c and Supplementary 
Table 4). Of these, 25 increased the frequency of NGFRHIGH/
EGFRHIGH cells and 36 decreased the frequency. Beyond known 
factors such as SOX10 and MITF26,30–32, we identified several fac-
tors not previously known to affect resistance to BRAFV600E inhibi-
tion. These include DOT1L, encoding an H3K79 methyltransferase  
associated with melanoma oncogenesis33, and BRD2, a member of 
the BET family often overexpressed in melanoma34. In a secondary 
targeted screen of the 34 high-confidence targets, 25 replicated in 
the original WM989-A5-G3-Cas9 line and 20 showed similar effects 
in another melanoma line (451Lu-Cas9; Extended Data Fig. 3 and 
Supplementary Table 4). Together, these hits represented potential 
candidates for modulating priming and thus resistance. (Note that 

EGFR can be regarded as a positive control: our assay involved sort-
ing for EGFRHIGH cells, so many genetic disruptions of EGFR would 
lead to a loss of EGFR protein).

Changes in drug resistance can occur by priming-dependent and 
-independent mechanisms. The priming screen was designed to 
identify candidate factors that would either increase or decrease 
the percentage of cells with a ‘primed’ transcriptional profile (high 
expression of EGFR and NGFR). Conceptually, a factor could also 
affect the number of resistant colonies without affecting priming, 
that is, without forcing cells to adopt the characteristic primed tran-
scriptional profile. Instead, a factor could, say, increase the number 
of resistant colonies by lowering the priming ‘threshold’ needed for 
cells to become resistant, for instance, by lowering the level of resid-
ual mitogen-activated protein kinase signaling required for cells  
to proliferate in vemurafenib, allowing the survival of ‘subprimed’ 
cells that would normally not survive in drug. Thus, any particular  
factor could increase resistance by increasing the frequency of 
primed cells (Fig. 2a, middle) or by allowing more partially primed 
cells to become resistant (that is, lowering the putative threshold, 
Fig. 2a bottom), or both.

We wanted to measure how much these factors affected  
either priming frequency or resistance threshold. First, we ran a 
conventional survival screen (also, a secondary targeted screen with 
another melanoma line) based on the number of resistant colonies 
(‘resistance screen’; Extended Data Figs. 3 and 4 and Supplementary 
Table 4). We identified 20 high-confidence factors that, when 
knoc ked out, increased the number of resistant cells, and 4 that 
reduced the number of resistant cells. The hits included signaling 
pathways elements like mitogen-activated protein kinase (CSK)35, 
Wnt/β-catenin (KDM2A)36 and Hippo (LATS2)37.

It is important to note that neither the priming screen nor the 
resistance screen were run to saturation to identify all factors that 
affected either priming frequency or resistance threshold. Thus, 
even if a factor was identified in, say, the priming screen, it may also 
affect the number of resistant colonies even if it did not appear as a 
hit in the resistance screen (as discussed later). Therefore, the only 
way to systematically evaluate whether knocking out a factor would 
affect either priming frequency or resistance threshold (or both) 
was to measure, on a knockout-by-knockout basis, changes in the 
frequency of NGFR positivity and the number of resistant colonies 
produced, respectively. We measured NGFR positivity in 83 differ-
ent targets taken from both screens, and further looked for changes 
in resistance in 35 of those (Fig. 2b and Extended Data Fig. 5).  
Individual knockouts exhibited a range of changes in both the fre-
quency of NGFRHIGH cells and the number of resistant colonies 
formed. Many hits from the priming screen (15 of 21 tested by both 
immunofluorescence and resistant colony formation) showed the 
predicted change in the frequency of priming and, concomitantly, 
in the number of resistant colonies (for example, LATS2 and BRD2;  
Fig. 2c), even over a range of drug concentrations (Extended Data  
Fig. 6a). Thus, knocking out factors that changed the frequency of 
cells expressing NGFR (a proxy for the primed cellular state) was asso-
ciated with concordant changes in the number of resistant colonies.

It was possible that removal of a factor could increase the fre-
quency of NGFRHIGH/EGFRHIGH cells and the frequency of resistant 
colonies (Fig. 2c), but that the newly formed NGFRHIGH/EGFRHIGH 
cells were not actually resistant and rather some other popula-
tion was now responsible for the additional resistant colonies. To  
demonstrate that the newly formed NGFRHIGH/EGFRHIGH cells were 
indeed driving the increased number of resistant colonies, we iso-
lated NGFRHIGH/EGFRHIGH cells from DOT1L-inhibited cells and 
added vemurafenib, and found that this now larger population of 
highly expressing cells had a similar if not higher propensity to 
become resistant; thus, the change in priming accounted for most of 
the resistant phenotype (Fig. 2e).
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While there was an overall concordance between changes in 
priming and resistance, knockouts of many genes varied widely in 
the degree to which this relationship held (Fig. 2b). For instance, 
knockout of EP300 increased NGFRHIGH by ~twofold but only 
slightly increased the number of resistant colonies, while knock-
out of CSK only slightly increased the number of NGFRHIGH 
cells but increased the number of resistant colonies over sixfold  
(Fig. 2b,c). Notably, knocking out CSK increased resistance to the 
point of producing a lawn of resistant cells, making it difficult to 
accurately count colonies and explaining why it was the domi-
nant hit in the resistance screen. As mentioned, hits like CSK that 
affect resistance without affecting priming may affect the resistance 
threshold (Discussion).

Of the factors identified by the resistance screen, only five were also 
identified in our priming screen (Fig. 2d), suggesting that hits from 
the priming screen may not affect resistance. However, upon testing 
priming factors individually for their effects on the number of resis-
tant colonies, most of the hits in the priming screen (15 of 21 tested) 
affected the number of resistant colonies (Extended Data Fig. 5b). 
This discordance highlights the utility of designing a screen focused 
on priming rather than resistance as a whole. In principle, if the resis-
tance screen could isolate all possible factors affecting every aspect of 
resistance, then it would have found priming factors that also affect 
resistance. In practice, however, the number of cells required makes it 
difficult to run these screens to saturation, and as a result, dominant 
hits that change resistance alone (for example, CSK) comprised so 
many cells in the pooled resistance screen that priming factors became 
difficult to detect. Thus, screens targeting priming can potentially 
reveal new hits that may elude detection by other modes of screening.

Changes in the frequency of primed cellular states lead to in vivo 
tumor growth variability. We wondered whether the factors 
we identified could affect resistance in  vivo, which has complex 
microenvironmental factors38. We tested three factors: DOT1L and 
LATS2, which increased the frequency of NGFRHIGH/EGFRHIGH cells 
in vitro, and BRD2, which decreased the frequency of these cells.

After knocking out these targets in WM989-A6-G3-Cas9-5a3 
cells, we injected the cells into NOD/SCID (nonobese diabetic/ 
severe combined immunodeficient) mice (n = 12 mice per  

knockout) and allowed tumors to develop (Fig. 3). The tumor  
volumes over time were consistent with our in vitro results: at the 
treatment endpoint (Methods), DOT1L knockout tumors treated  
with a BRAFV600E inhibitor were roughly 3.5 times larger than  
controls (P = 0.010), and LATS2 knockout tumors were 1.6 times 
larger than controls (P = 0.062). Meanwhile, BRD2-knockout 
tumors were approximately half as big as controls (P = 0.045). In  
the absence of drug, both knockout and control melanoma cells 
showed roughly similar growth dynamics (Fig. 3, bottom). Thus, 
priming factors also affect the response of tumors to BRAFV600E  
inhibition in vivo.

Relative timing of targeting variability can affect drug resistance. 
Priming factors may affect resistance through mechanisms that can 
interact with BRAFV600E inhibition in previously uncharacterized 
ways. For instance, a factor could affect the number of primed cells 
before BRAFV600E inhibition but not after, once the cells begin repro-
gramming toward stable resistance. Inhibiting such a factor before 
inhibiting BRAFV600E would be critical.

To test this possibility, we used the DOT1L inhibitor pime-
nostat39,40, which increases the number of colonies resistant to 
BRAFV600E and MEK inhibitors (Extended Data Fig. 7a–c), to see 
if the relative timing of DOT1L inhibition affected the formation 
of resistant colonies. In addition to vemurafenib treatment, we 
pretreated cells with the DOT1L inhibitor for 7 d and co-treated 
with the DOT1L inhibitor concurrently with vemurafenib  
(Fig. 4a). Pre-inhibition of DOT1L resulted in threefold more  
colonies, but co-treatment led to no change in the number of resis-
tant colonies (Fig. 4b). Thus, the relative timing of inhibition of 
cellular priming vis-à-vis mainline therapy can have a profound 
effect on resistance.

Knockout of genes that increase the frequency of primed cell 
states also increase cellular differentiation. Our priming screens 
identified factors that operate via a variety of signaling pathways 
and transcriptional regulatory mechanisms. Interestingly, a priori, 
no particular pathway dominated the set of identified factors; how-
ever, seemingly unrelated genes nevertheless could affect priming 
through common biological processes.

Fig. 2 | Effects of modulators of cellular priming on resistant colony formation. a, In melanoma, the frequency of primed cells in the population dictates 
the degree of resistance to BrAFV600E inhibition. Changes to the mapping between cellular priming and the response of a cell to the drug can alter the 
number of resistant colonies that form upon addition of the BrAFV600E inhibitor vemurafenib. b, relationship between the frequency of nGFrHIGH cells  
(x axis) and the number of resistant colonies (y axis). We plotted the frequency of nGFrHIGH cells as the mean log2 fold change over three replicates in the 
number of nGFrHIGH cells following knockout of the gene indicated, normalized by cells with nontargeting sgrnAs (for variability of the effect size across 
replicates of a given target, see Extended Data Fig. 5). We quantified the log2 fold change in the number of resistant colonies in the knockout cell line as 
compared to the nontargeting control cell lines. Orange points are targets identified as high-confidence hits (tier 1 and tier 2) in the cellular priming screen; 
blue are those identified as high-confidence hits in the resistance screen; purple are those identified as high-confidence hits in both screens; gray are those 
that may have shown an effect in either or both screens but were not classified as high-confidence hits in either screen. c, To validate the phenotypic effect 
of targets identified by our genetic screens, we knocked out 83 of the targets and quantified both the frequency of nGFrHIGH cells by immunofluorescence 
using anti-nGFr antibodies (top) and the number of resistant colonies (bottom) that formed upon BrAFV600E inhibition. Here we show example validation 
of BRD2 and LATS2 knockouts (hits in the cellular priming screen) and of CSK knockouts (hit in the resistance screen only). The schematic represents the 
effect of the knockout in the priming screen on the frequency of nGFrHIGH/EGFrHIGH cells. The immunofluorescence data was captured in three biological 
replicates. The colony formation assays for this specific experiment were carried out once (Extended Data Fig. 5a,b). Of note, the number of colonies 
reported for the CSK knockout is an underestimate due to difficulties in accurately counting colonies in highly confluent plates. d, Effect overlap between 
hits from the cellular priming and resistance screens. The position of each target (dots) represents the number of times (as median log2 fold change) the 
sgrnAs were detected in the nGFrHIGH/EGFrHIGH population versus an unsorted population of melanoma cells (priming screen; x axis) or in the population 
of cells resistant to vemurafenib versus the population of cells before treatment (resistance screen; y axis). Orange labels correspond to high-confidence 
targets (tier 1 and tier 2) in the cellular priming screen; blue corresponds to high-confidence targets in the resistance screen; purple corresponds to 
high-confidence targets in both screens. The effects of all targets in both screens are displayed as a density histogram. e, To compare the resistance 
potential of primed cells (marked by nGFr and EGFr expression) resulting from inhibition of DOT1L (a target from the priming screen) with that of control 
populations, we first pretreated cells with either a DOT1L inhibitor (EPZ5676) or DMSO for 7 d. We then sorted cells by nGFr and EGFr expression 
using FACS. Then, we treated an equal number of cells with vemurafenib and quantified the resulting number of drug-resistant colonies. Dots represent 
individual data points. The bars represent the average number of colonies in each population across triplicates, normalized to every 1,000 cells present 
before addition of vemurafenib. Error bars represent the standard deviation across triplicates.
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To look for such commonalities, we used RNA sequencing to 
measure genome-wide transcript levels for 266 knockout cell lines 
targeting 80 different proteins taken from both the priming and 
resistance screens (see Supplementary Table 4 and Extended Data 
Figs. 8 and 9 for information regarding validation rates of the targets 

used), reasoning that genes participating in a particular biological 
process may exhibit similar patterns of differential expression when 
knocked out.

Clustering the transcriptome profiles from the different knock-
out cell lines (Extended Data Fig. 10a) showed that, while the  
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Fig. 4 | Effect of targeting cellular priming at different times relative to BRAFV600E inhibition. a, To assess the effect of DOT1L inhibition (green arrows; 
4 µM pinometostat) at different times on a cell’s ability to survive BrAFV600E inhibition, we first established a baseline number of colonies that grow when 
WM989-A6-G3 cells are exposed to 1 µM of vemurafenib for 3 weeks (leftmost panel). Then, in a separate population, we inhibited BrAFV600E and DOT1L 
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during 3 weeks of vemurafenib treatment (pretreatment and co-treatment). b, number of resistant colonies resulting from each therapeutic regimen in 
Fig. 4a as the fold change versus baseline (vemurafenib alone) for three replicates normalized to the number of cells in culture before BrAFV600E inhibition. 
Dots represent individual data points. The bars quantify the mean fold change across the three replicates. Error bars indicate the standard error.
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transcriptomes induced by some gene knockouts were clearly dis-
tinct (such as MITF, SOX10 and KDM1A), many others appeared 
to show only relatively small differences from the parental cell line. 
We reasoned that, while the sets of differentially expressed genes 
may be nonoverlapping, they could still belong to the same pathway. 
Using the transcriptome of each knockout, we performed a gene-set 
enrichment analysis (GSEA; Methods) and obtained an enrichment 
score for biological processes from the Gene Ontology (GO) terms 
database (Fig. 5a)41. Using these enrichment scores, the knockout 
lines clustered in a more coherent pattern. Notable associations 
include cluster 5, containing the canonical melanocyte master regu-
lators MITF and SOX10, and cluster 1, containing DOT1L, LATS2, 
RUNX3 and GATA4.

Interestingly, knocking out MITF and SOX10 increased drug 
resistance, as did knocking out most members of cluster 1, but the 
transcriptome profiles of these two clusters appeared to be roughly 
opposite of each other. The GO gene sets in group E, which appeared 
maximally different between MITF/SOX10 and cluster 1, included 
several related to differentiation, including sets for melanocyte dif-
ferentiation and neural crest differentiation (Fig. 5b). Knockout of 
MITF and SOX10 decreased the expression of these genes, match-
ing the general consensus that drug resistance is typically driven by 
dedifferentiation8,26. It was thus unexpected that most elements of 
cluster 1 increased resistance by further promoting differentiation 
(Fig. 5c), suggesting a possible new mechanism by which one could 
affect drug resistance; the latter has further support from the impor-
tance of timing in DOT1L inhibition (Fig. 4). This axis of differ-
entiation was coordinated across several gene sets (Extended Data  
Fig. 10b). (Note that the role of MITF in therapy resistance is  
complex in general42).

The knockout of targets that led to differentiation and dedif-
ferentiation had characteristic changes in priming and resistance. 
Knockouts in cluster 1 (differentiation) mimicked many aspects of 
the transcriptomes of NGFRHIGH, EGFRHIGH, NGFRHIGH/EGFRHIGH 
and even vemurafenib-resistant melanoma cells (expression of genes 
involved in cell–matrix adhesion, angiogenesis and cell migration; 
Fig. 5a,b). Knockouts of these targets showed a strong and often 
proportional correspondence between the frequency of NGFRHIGH 

cells and the number of colonies that developed under BRAF 
inhibition, suggesting that the increase/decrease in the frequency  
of primed cells was the cause of increased/decreased resistance  
(Fig. 5d; for example, LATS2, JUNB, FOSL1 and CBFB). For MITF 
and SOX10 (cluster 5), however, the frequency of NGFRHIGH cells 
did not change nearly as much as the number of resistant colonies.

Different categories of knockouts resulted in a reduction (as 
opposed to increase) in the number of resistant colonies. Some 
resistance-reducing knockouts (BRD8 and PRKAA1) clustered 
with DOT1L, while another (BRD2) clustered with MITF/SOX10. 
It is possible that these factors work in inverse ways to reduce drug 
resistance by either affecting differentiation or dedifferentiation. 
Meanwhile, the majority of resistance-reducing knockouts appeared 
to cluster separately. Cluster 2 was associated with metabolism (for 
example, biosynthesis of amino acids and acyl-CoA metabolism), 
suggesting that metabolic processes may reduce drug resistance 
(Supplementary Table 6). The other clusters did not show any 
coherent set of biological processes affected (for example, SRC, IRF7 
and PKN2, among others).

We also wanted to check what inhibiting these factors did to the tran-
scriptomes of the NGFRHIGH/EGFRHIGH cells specifically. We isolated 
NGFRHIGH/EGFRHIGH cells both from WM989-A6-G3 cells pretreated 
with a DOT1L inhibitor (pinometostat) and from WM989-A6-G3 
cells pretreated with dimethylsulfoxide (DMSO) and then measured 
the transcriptomes of these subpopulations. A principal-component 
analysis of these transcriptomes showed that DOT1L inhibition led to 
newly primed cells that were transcriptionally similar to the primed 
cells in the DMSO-treated population (extensively explored and 
described by Shaffer et al.14), suggesting that the changes we induced 
indeed led to new primed cells that are transcriptomically similar to 
those in non-DOT1L-inhibited cells (Fig. 5e,f).

Discussion
We have demonstrated, using high-throughput genetic screening, 
that there are genetic factors that can alter cellular plasticity in can-
cer cells, thereby affecting their resistance to targeted therapeutics. 
These factors revealed new vulnerabilities beyond conventional 
genetic screens, demonstrating the potential of screens designed 

Fig. 5 | Gene-set enrichment analysis of the transcriptional effects induced by knockout of select screen targets. a, The heat map represents biclustering 
analysis of different knockout cell lines (rows) based on the GSEA score of GO gene sets. Within the heat map, red indicates enrichment in the sense that 
there are more differentially upregulated genes in knockout versus control in that gene set than expected by chance, whereas blue indicates enrichment 
of downregulated genes (shade indicates degree of enrichment). Each target knockout (rows) represents transcriptomes of biological triplicates (unless 
otherwise stated in Supplementary Table 4). Target labels (rows) in green indicate genes whose knockout increased the frequency of nGFrHIGH/EGFrHIGH 
cells in the screen, while red indicates targets whose knockout increased the number of cells resistant to vemurafenib, and gray indicates targets that 
decreased the frequency of either nGFrHIGH/EGFrHIGH cells or cells resistant to vemurafenib. As before, we organized targets into high-confidence hits 
(tiers 1 and 2) and low-confidence hits (tiers 3 and 4) based on the percentage of sgrnAs against a target that showed at least a twofold change in the 
initial screen (see ‘knockout color key’). The asterisks next to the label indicate the tier (tier 1, ****; tier 2, ***; tier 3, **; tier 4, *). Information regarding 
validation rates of each tier can be found in Extended Data Figs. 8 and 9. Based on the dendrogram (left), we grouped targets into six clusters. We also 
clustered gene sets (columns) into groups, labeled by the letters on top of the heat map. The white boxes inside the heat map demark groups of gene 
sets specifically upregulated in a given cluster. b, Select list of gene sets in groups D and E from a (for a complete list of gene sets within each group, 
see Supplementary Table 6). c, relationship between the expression of genes involved in neural crest differentiation (x axis) and the number of colonies 
resistant to vemurafenib (y axis) following the knockout of a target. For each knockout, we plotted the expression of neural crest differentiation genes as 
the enrichment score obtained through GSEA for the neural crest differentiation gene set (GO term). We quantified the log2 (fold change) in the number 
of resistant colonies in the knockout cell line as compared to the nontargeting control cell lines. Colors represent the cluster grouping of each knockout 
based on a. d, relationship between the frequency of nGFrHIGH cells (x axis) and the number of resistant colonies (y axis). We plotted the frequency of 
nGFrHIGH cells as the median log2 (fold change) over three replicates in the number of nGFrHIGH cells following knockout of the indicated gene normalized 
by cells with nontargeting sgrnAs (for variability of the effect size across replicates of a given target, see Extended Data Fig. 5.) We quantified the log2 
(fold change) in the number of resistant colonies in the knockout cell line as compared to the nontargeting control cell lines. We color coded all targets 
by groupings based on their transcriptomes (see a) following knockout of the gene indicated. e,f, We performed principal-component analysis of the 
transcriptome of different subpopulations of primed and unprimed cells in either control melanoma populations or cells where we inhibited DOT1L. We 
used as input the gene expression levels of all expressed genes (normalized to reads per million) to identify primary axes that accounted for the greatest 
degree of transcriptome variability between these populations of cells. In e, the color indicates the phenotype of the population, meaning a mixture of all 
the melanoma cells (gray), only cells expressing nGFr and EGFr (green) or only cells with low levels of nGFr and EGFr (brown). In f, the color indicates 
whether the cells were pretreated with the DOT1L inhibitor EPZ5676 (blue) or with DMSO (pink).
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to target cellular priming. Drug screens targeting gene expression 
‘noise’ have also shown similar therapeutic potential43.

Some priming factors (SOX10 and MITF) play critical roles in 
differentiation and drug resistance26,30–32, while others (LATS2 and 
RUNX3) are involved in ‘stemness’ and drug resistance37,44,45. Note, 
however, that no single factor or pathway dominated, that is, there 
was no ‘smoking gun’. This may be because our screen did not tar-
get all potential regulators. Alternatively, it may be that the biology 
of cellular variability is intrinsically multifactorial15.

The technical challenges associated with performing rare-cell 
screens at full depth provide motivation to screen for priming.  
In principle, a resistance screen would reveal all factors affecting 
resistance, including those that affect priming, but there was rela-
tively little overlap between our priming and resistance screens. The 
fact that the majority of the genes identified in our priming screen 

did in fact affect resistance when tested individually suggests that 
they may have been identified were it possible to run resistance 
screens to saturation.

Knocking out some factors led to discordant changes in the fre-
quencies of NGFRHIGH cells and resistant colonies. The former may pri-
marily affect cellular priming, that is, the cellular state, while the latter 
may affect the mapping between initial cellular states and their fates 
upon the addition of vemurafenib. (Here, the ‘mapping’ refers to the 
connections between states like ‘AXLHIGH’ and fates like ‘drug resistant’ 
or ‘drug sensitive’). In one simple model, cells occupy a distribution of 
states, and those above a threshold survive drug and those below do 
not (Fig. 6). In this model, some knockouts may alter the distribution 
of cells in the initial population or the threshold itself, or some com-
bination of both. It is wise to caution against this simple interpreta-
tion, however. NGFR expression is just a marker for the primed state, 
and factors may affect the frequency of primed cells without showing  
any effect on NGFR expression. An argument against this is the fact 
that the transcriptomes of knockouts such as DOT1L that increase the 
frequency of NGFR and resistance appear to be similar to the profile 
of NGFRHIGH cells themselves (Fig. 5a). It is also likely that a number 
of different types of resistant cells exist; anecdotally, we have noticed 
that resistant cells from some of our knockout lines do appear mor-
phologically different. Such results suggest a mapping from a contin-
uum of initial cellular states to multiple cellular fates.

We have observed similar rare-cell variability in primary mela-
nocytes14, raising the possibility that the same variability may also 
play a role in normal biological processes. The factors we have iso-
lated may play a role in regulating variability in these normal bio-
logical contexts. Uncovering the regulators of the mapping between 
variable cellular states and ultimate phenotypic fates may prove 
fruitful, both conceptually and practically.
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when challenged with drug. Here, there are at least two ways by which one 
could conceivably alter the number of cells that survive the drug. In one 
scenario (middle), the distribution of ‘greenness’ could change, resulting 
in more cells being above the threshold, leading to more resistant colonies. 
In another scenario, the distribution of phenotypes remains unchanged, 
but the threshold itself moves, also leading to more resistant colonies. Our 
results suggest (but do not prove) that both scenarios may play out to 
varying degrees as a result of different genes being knocked out.
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Methods
Cell culture. We obtained patient-derived melanoma cells (WM989 and 451Lu, 
female and male, respectively) from the laboratory of M. Herlyn. Both the WM989 
and the 451Lu cell lines contain the p.Val600Glu-encoding mutation at codon 600 
in the BRAF gene. This mutation causes constitutively active kinase activity and 
activation of the MEK and ERK signaling pathway. The WM989 cell line expresses 
wild-type N-RAS, c-KIT and CDK4, and 451Lu is wild-type for PTEN, N-RAS, 
c-KIT and CDK4. For WM989, we derived a single-cell subclone (A6-G3) in our 
laboratory14. We grew these cells at 37 °C in Tu2% medium (78% MCDB, 20% 
Leibovitz’s L-15 medium, 2% FBS and 1.68 mM CaCl2). We authenticated all cell 
lines via human short tandem repeat profiling. We periodically tested all cell lines 
for mycoplasma infections.

Plasmid construction and single guide RNA cloning. All the Cas9-positive 
melanoma cell lines in this study were derived by lentiviral transduction with a 
Cas9 expression vector (EFS-Cas9-P2A-Puro; Addgene, 108100). All the sgRNAs 
were cloned into a lentiviral expression vector (LRG2.1; Addgene, 108098), which 
contains an optimized sgRNA backbone. The annealed sgRNA oligonucleotides 
were ligated with T4 to the BsmB1-digested LRG2.1 vector. To improve U6 
promoter transcription efficiency, an additional 5′ G nucleotide was added to all 
sgRNA oligonucleotide designs that did not already start with a 5′ G.

Construction of domain-focused single guide RNA pooled library. Gene lists 
of transcription factors, kinases and epigenetic regulators in the human genome 
were manually curated based on the presence of DNA-binding domain(s), 
kinase domains and epigenetic enzymatic/reader domains. The protein domain 
sequence information was retrieved from the NCBI Conserved Domains Database. 
Approximately six independent sgRNAs were designed against individual 
DNA-binding domains (Supplementary Tables 1–3)27–29. The design principle of 
sgRNA was based on previous reports, and the sgRNAs with the predicted high 
off-target effect were excluded46. For the initial pooled CRISPR screens, all of the 
sgRNAs oligonucleotides, including positive and negative control sgRNAs, were 
synthesized in a pooled format (Twist Bioscience) and then amplified by PCR. 
PCR-amplified products were cloned into a BsmB1-digested LRG2.1 vector using 
a Gibson Assembly kit (NEB, E2611). For the targeted pooled validation screens, 
individual sgRNAs were synthesized, cloned and verified via Sanger sequencing in 
a 96-well array platform (Supplementary Table 5). Individual sgRNAs were pooled 
in an equal molar ratio. To verify the identity and relative representation of sgRNAs 
in the pooled plasmids, a deep-sequencing analysis was performed on a MiSeq 
instrument (Illumina), confirming that 100% of the designed sgRNAs were cloned 
in the LRG2.1 vector and the abundance of >95% of individual sgRNA constructs 
was within fivefold of the mean (data not shown).

Lentivirus preparation. We produced lentivirus containing sgRNAs using 
HEK293T cells cultured in DMEM supplemented with 10% FBS and 1% 
penicillin–streptomycin. When the cells reached 90–100% confluency, we mixed 
the sgRNA vectors with the packaging vector psPAX2 and envelope vector 
pVSV-G in a 4:3:2 ratio in OPTI-MEM (Thermo Fisher Scientific, 31985070) and 
polyethylenimine (Polysciences, 23966). We collected viral supernatants for up to 
72 h twice daily.

Transduction of spCas9. We introduced the stable expression of spCas9 via 
spinfection of lentivirus along with 5 μg ml−1 polybrene for 25 min at 1,750 r.p.m. 
We exchanged the medium ~6h after transduction and selected for cells expressing 
spCas9 via puromycin selection (1–2 μg ml−1; 1 week). For WM989-A6-G3, we 
generated two cell lines, WM989-A6-G3-Cas9 and WM989-A6-G3-Cas9-5a3, the 
latter being a single-cell isolate of the bulk Cas9-expressing population. We verified 
that this cell line remained sensitive to PLX4032, that it still contained primed cells 
marked by the expression of drug-resistance markers and that it was capable of 
editing the genome (Extended Data Fig. 2). Following the same methodology, we 
generated a 451Lu-Cas9 cell line from 451Lu cells.

Transduction of lentivirus containing single guide RNAs. For transfection of 
melanoma cells, we infected cells with lentivirus and 5 μg ml−1 polybrene for 25 min 
at 1,750 r.p.m. We exchanged the medium ~6 h after transfection. We quantified 
the percentage of the population transfected by measuring the number of green 
fluorescent protein-positive cells at day 5 after transfection. For the screens, we 
aimed to transfect 30% of the population. For all other experiments, we aimed to 
transfect >95% of the population.

Initial pooled CRISPR screens. We worked with three main pooled sgRNA 
libraries in WM989-A6-G3-Cas9-5a3 cells. These libraries targeted ~2,000 
different kinases, transcription factors and proteins involved in epigenetic 
regulation. In total, the libraries contained ~13,000 different sgRNAs, including 
nontargeting controls and controls that affect cell viability (Supplementary 
Tables 1–3). We aimed to transfect >1,000 cells for each sgRNA and isolated 
~1,000 cells per sgRNA about a week after transfection and before any selection. 
These baselines allowed us to validate the efficiency of our screen by sgRNA 
enrichment/depletion of nontargeting controls and of controls that affect cell 

viability (Extended Data Fig. 2). Additionally, these baselines helped us to 
identify sgRNAs with lethal effects in our cells. Given that we were interested in 
rare-cell phenotypes that exist in a ratio of 1:2,000 cells or less, throughout our 
screens we expanded the population of cells to 50,000–250,000 cells per sgRNA, 
often surpassing a billion cells per screen. This scale allowed us to observe the 
rare-cell phenotypes dozens to hundreds of times in each of our controls (and in 
each sgRNA).

The priming screen aimed to identify perturbations that altered the 
frequency of NGFRHIGH/EGFRHIGH cells. To this end, 1 month after we 
transfected and expanded the cells, we isolated the NGFRHIGH/EGFRHIGH cells via 
magnetic-activated cell sorting followed by FACS (see below). We also collected 
an additional ~1,000 cells per sgRNA, without any selection, for comparison. 
Then, we isolated DNA from the cells and built sequencing libraries (see below) to 
quantify the representation of each sgRNA in the NGFRHIGH/EGFRHIGH population 
and compare it to the unsorted baseline.

In the resistance screen, we aimed to identify proteins important for the 
development of resistance to vemurafenib. Here, we treated the cells as above, 
except that instead of isolating NGFRHIGH/EGFRHIGH cells, we grew cells resistant 
to vemurafenib (see below) by exposing the cells to vemurafenib for 3 weeks. As 
above, we isolated DNA from the resulting population of cells and built sequencing 
libraries to quantify the representation of each sgRNA. The raw output of all 
screens was reads per sgRNA.

To select hits in our screens, we first normalized the output of our screens to 
reads per million and then calculated the fold change in sgRNA representation 
between different samples. For our priming screen, we focused on the fold 
change in sgRNA representation between NGFRHIGH/EGFRHIGH cells and the bulk 
population of melanoma cells. For the resistance screen, we focused on the fold 
change in sgRNA representation between cells treated for 3 weeks with 1 μM 
vemurafenib and cells never exposed to the drug. After normalizing the change 
in sgRNA representation of each sgRNA by the median change across all sgRNAs, 
we organized our hits into tiers (1 through 4) based on the percentage of sgRNAs 
against the target exhibiting at least a twofold change in representation. We 
considered high-confidence hits those targets where (1) ≥75% (tier 1) or ≥66% 
(tier 2) of its sgRNAs showed at least a twofold enrichment/depletion throughout 
the screen and (2) no two sgRNAs showed a significant change (twofold change) 
in opposing directions (that is, one sgRNA is significantly enriched in the 
selected population while another one is significantly depleted). Other targets 
that showed a twofold enrichment/depletion throughout the screen, but in less 
than 66% of its sgRNAs, were considered lower confidence hits (tier 3 and tier 4). 
Note that we excluded from analysis any sgRNA with fewer than ten raw reads in 
all samples.

Secondary, targeted pooled CRISPR screen. To validate the replicability and 
generality of our hits, we designed a pool of sgRNAs for targeted screening that 
targeted proteins that either emerged as hits in our initial screens or did not 
pass our hit-selection criteria but changed the frequency of NGFRHIGH/EGFRHIGH 
cells or the frequency of cells resistant to vemurafenib (Supplementary Table 5). 
In this pool, we included approximately three sgRNAs per protein target and 
carried out the screen in WM989-A6-G3-Cas9-5a3 cells, as well as in another 
BRAFV600E melanoma cell line, 451Lu-Cas9. As before, we conducted a priming 
screen where we isolated NGFRHIGH/EGFRHIGH cells, as well as a resistance screen 
where we exposed cells to 1 μM vemurafenib for 3 weeks. Here too, we first 
normalized the output of our screens to reads per million and then calculated 
the fold change in sgRNA representation between different samples. Unlike on 
our initial screens, here we normalized the change in sgRNA representation to 
the median change in representation of the ten nontargeting sgRNA controls 
included in the screen.

Tumor growth assays in xenografts. All animal experiments were approved by 
the Institutional Animal Care and Use Committee (no. 112503X_0) and were 
performed in a facility accredited by the Association for the Assessment and 
Accreditation of Laboratory Animal Care. WM989-A6-G3-Cas9-5a3 human 
melanoma cells (1 × 106 cells) suspended in 100 μl of PBS were subcutaneously 
injected into 8-week-old NOD/SCID mice (Charles River Laboratories). 
When resulting tumors reached 150 mm3, mice were fed either AIN-76A 
chow (untreated group, placebo) or AIN-76A chow containing 417 mg kg−1 
PLX4720 (treated group). Tumor sizes were measured every 3–4 d using digital 
calipers, and tumor volumes were calculated using the following formula: 
volume = 0.5 × (length × width2). Mice were euthanized when tumors reached 
~1,500 mm3 or upon development of skin necrosis. Throughout this time, the 
animal facility holding rooms were maintained between 70–73 °F and a humidity of 
30–35%. The animal holding room light schedules were maintained on a 12-h on/
off cycle with lights on from 6:00 to 18:00.

To assess growth differences between knockout and control tumors, for each 
mouse, we first quantified the change in tumor size from the initial time point to 
the time point in question as a log2 fold change in tumor volume. We determined 
the statistical significance of the differences observed between knockout and 
control at each therapy time point with a one-tailed t-test. For each knockout 
cell line, we then calculated the mean tumor volume and standard error of the 
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mean (Fig. 3). Note that within a given knockout-to-control comparison in 
each of the treatment arms, we defined the endpoint as the last point in time at 
which the number of mice in each group (knockout and control cell line) was at 
least three. The n at each time point and the respective P value are presented in 
Supplementary Table 7.

Immunostaining. For NGFR staining of fixed cells, after fixation and 
permeabilization, we washed the cells for 10 min with 0.1% BSA/PBS, and then 
stained the cells for 10 min with 1:500 anti-NGFR APC-labeled clone ME20.4 
(BioLegend, 345107). After two final washes with PBS, we kept the cells in PBS. For 
EGFR and NGFR staining of live cells, we incubated melanoma cells in suspension 
for 1 h at 4 °C with 1:200 mouse anti-EGFR antibody, clone 225 (Millipore, 
MABF120) in 0.1% BSA/PBS. We then washed twice with 0.1% BSA/PBS and 
then incubated for 30 min at 4 °C with 1:500 donkey anti-mouse IgG-Alexa Cy3 
(Jackson Laboratories, 715-545-150). We washed the cells again (twice) with 0.1% 
BSA/PBS and incubated for 10 min with 1:500 anti-NGFR APC-labeled clone 
ME20.4 (BioLegend, 345107). We again washed the cells twice with 0.1% BSA/PBS 
and finally resuspended them in 1% BSA/PBS.

Isolation of NGFRHIGH/EGFRHIGH cells. To enrich for NGFRHIGH/EGFRHIGH cells, 
we first immunostained melanoma cells as detailed above. Then, we used a manual 
separator for magnetic cell isolation (magnetic-activated cell sorting with LS 
columns and anti-APC microbeads from Miltenyi Biotec). In short, following the 
manufacturer’s instructions, we incubated cells and microbeads at 4 °C for 15 min, 
then washed and pelleted the cells via centrifugation. After resuspending the cells, 
we passed them through LS magnetic columns. After enriching for NGFRHIGH cells, 
we proceeded to select only the cells expressing both NGFR and EGFR via FACS 
(MoFlo Astrios EQ).

Growth of resistant colonies. To grow melanoma cells resistant to BRAFV600E 
inhibition, we exposed melanoma cells to 1 μM vemurafenib (PLX4032; 
Selleckchem, S1267) for 2–3 weeks. For the combined BRAFV600E and MEK 
inhibition assays, we also used dabrafenib at 500 nM and 100 nM (GSK2118436; 
Selleckchem, S2807), trametinib at 5 nM and 1 nM (GSK1120212; Selleckchem, 
S2673) and cobimetinib at 10 nM and 1 nM (GDC-0973, Selleckchem, S8041).

Inhibition of DOT1L via small-molecule inhibitor. For all assays involving 
pharmacological inhibition of DOT1L, we used pinometostat at concentrations 
ranging from 1 μM to 5 μM (EPZ5676; Selleckchem, S7062).

MiSeq library construction and sequencing. To quantify the sgRNA 
representation following selection in our screen, we sequenced the sgRNAs 
according to work by Shi et al.47. In short, we isolated genomic DNA using the 
Quick-DNA Midiprep Plus Kit (Zymo Research, D4075) per the manufacturer’s 
specifications. We then performed PCR amplification of the sgRNAs using Phusion 
Flash High Fidelity Master Mix Polymerase (Thermo Scientific, F-548L) and 
primers that incorporate a barcode and a sequencing adaptor to the amplicon. Our 
amplification strategy consisted of an initial round of parallel PCRs (23–29 cycles 
of up to 200 parallel reactions per sample. We then pooled the PCR reactions and 
purified them using the NucleoSpin Gel and PCR clean-up kit (Macherey-Nagel, 
740609.250). We continued with eight PCR cycles using Phusion Flash High 
Fidelity Master Mix Polymerase, followed by column purification with the 
QIAquick PCR Purification Kit (QIAGEN, 28106). We quantified the sgRNA 
libraries with the DNA 1000 Kit (Agilent, 5067-1504) on a 2100 Bioanalyzer 
Instrument (Agilent, G2939BA). We pooled the barcoded sgRNA libraries and 
sequenced via 150-cycle paired-end sequencing (MiSeq Reagent Kit v3; Illumina, 
MS-102-3001). We then mapped the resulting sequences to our reference sgRNA 
library and proceeded to select hits.

Cell fixation and permeabilization. For the imaging assays, we fixed cells 
for 10 min with 4% formaldehyde and permeabilized them with 70% ethanol 
overnight.

Colony formation assays. For each condition tested, we first split cells into two to 
four six-well plates at ~10,000–50,000 cells per well. We fixed and permeabilized 
one of the replicates to use as a baseline (number of cells plated before testing) and 
exposed the rest to the test condition. At the endpoint, we fixed and permeabilized 
the rest of the samples.

Image analysis of NGFR immunostains. We developed a custom MATLAB 
pipeline for counting cells and quantifying immunofluorescence signal of 
DAPI-stained and NGFR-stained cells (https://github.com/arjunrajlaboratory/). 
The software stitches together a large tiled image, then uses DAPI to identify cells. 
Using the nuclear area, it then looks at a set of pixels near the nucleus to quantify 
fluorescence intensity of the NGFR staining. After quantifying the expression 
level of NGFR following knockout of select screen targets and of nontargeting 
controls, we quantified the minimum expression level needed to be considered an 
NGFRHIGH cell. First, we selected the top 1% highest expressors of NGFR in each 
of our nontargeting negative controls. Then, within that top 1%, we obtained the 

median expression level of the lowest expressor across all controls, and used that 
as a threshold to quantify the frequency of NGFRHIGH cells in each of our knockout 
samples. Next, we calculated the change in frequency of NGFRHIGH cells in each test 
condition compared to controls and obtained a median fold change and standard 
deviation across all samples with knockout of one same protein (~3 different 
biological samples per protein). In total, we targeted ~86 different proteins across 
~258 different knockout biological samples.

Image analysis of colony formation. We developed a custom MATLAB pipeline 
for counting cells and colonies in tiled images of DAPI-stained cells (https://
github.com/arjunrajlaboratory/). First, the software stitches the individual image 
tiles into one large image by automatically (or with user input) determining the 
amount of overlap between each individual image. Then, the software identifies the 
location of each cell in the stitched image by searching for local maxima. We then 
manually identified the colony boundaries and quantified the number of colonies 
in each sample. We then calculated the frequency of resistant colonies by dividing 
the number of colonies by the total number of cells present in the culture before 
BRAFV600E inhibition. Finally, we scaled the frequency of colonies to colonies per 
10,000 cells and calculated the change in frequency between each sample and the 
median change across controls.

RNA sequencing and identification of differential expression. We sequenced 
mRNA in bulk from WM989-A6-G3 and WM989-A6-G3-Cas9 populations 
according to work by Shaffer et al.14. In addition to quantifying the transcriptome 
of EGFRHIGH, NGFRHIGH, NGFRHIGH/EGFRHIGH and vemurafenib-resistant cells, we 
quantified the transcriptional changes following the knockout of many tier 1 and 
tier 2 hits from both the priming and resistance screens. In addition to hits from 
our screens, we also quantified the transcriptome of targets that were not tier 1 
or tier 2 hits, but showed a change in the frequency of NGFRHIGH/EGFRHIGH cells 
or of cells resistant to vemurafenib. In total, we targeted ~83 different proteins, 
each in triplicate (using different sgRNAs) for a total of 280+ RNA-sequencing 
(RNA-seq) samples. For each sample, we isolated mRNA and built sequencing 
libraries using the NEBNext Poly(A) mRNA Magnetic Isolation Module and 
NEBNext Ultra RNA Library Prep Kit for Illumina per the manufacturer’s 
instructions. We then sequenced the libraries via paired-end sequencing (36 × 2 
cycles) on a NextSeq 500. We aligned reads to hg19 and quantified reads per 
gene using STAR and HTSeq. Finally, we used DEseq2 to identify differentially 
expressed genes.

Gene-set enrichment analysis. To identify ‘biological signatures’ enriched or 
depleted following the knockout of a given target, we used the GSEA software 
(http://software.broadinstitute.org/gsea/index.jsp). We focused on the biological 
process ontology of the GO gene sets (c5.bp.v6.2.symbols from https://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp#C5/) to obtain enrichment scores.

Grouping of targets based on transcriptomic analysis. To group targets into 
classes based on their transcriptional effects, we clustered all RNA-seq samples 
(hierarchical clustering via pheatmap in R) based on the change in expression  
(as obtained by DEseq2) of any gene differentially expressed (twofold change versus 
control, with an adjusted P ≤ 0.05) in at least one of the 83+ knockouts. We also 
grouped targets via pheatmap based on the enrichment scores obtained via GSEA. 
To identify the axes that accounted for the variability between each knockout, we 
also performed principal-component analysis based on the gene-set enrichment 
scores of each knockout. Note that in the aforementioned analysis we included the 
transcriptomes of primed cells (marked by the expression of EGFR alone, NGFR 
alone, and NGFR and EGFR in combination) and of cells resistant to vemurafenib.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data used in this work can be found at https://www.dropbox.com/sh/
t08558cl4mepfm6/AABBvbtlTPSNNPoMC9NTro-9a?dl=0/. RNA-seq data are 
also deposited at the Gene Expression Omnibus (GSE151825 and GSE149280). The 
gene sets used for analysis were obtained from https://www.gsea-msigdb.org/gsea/
msigdb/collections.jsp#C5/.

Code availability
All custom code used in this work is available at https://github.com/edatorre/2020_
TorreEtAl_data.git/ and https://www.dropbox.com/sh/t08558cl4mepfm6/
AABBvbtlTPSNNPoMC9NTro-9a?dl=0/. The software used for image analysis can 
be found at https://github.com/arjunrajlaboratory.
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Extended Data Fig. 1 | Technical validation of WM989-A6-G3-Cas9-5a3 cell line. a, To compare the frequency of drug resistance between 
WM989-A6-G3 and its daughter cell line WM989-A6-G3-Cas9-5a3, we cultured an equal number of cells from each cell line in 1 μM vemurafenib for 
3 weeks. Then, we counted the number of colonies that resulted from each cell line. Each dot represents the number of resistant colonies normalized 
to 10,000 cells alive in each sample before the addition of vemurafenib. The bars represent the mean number of colonies over triplicates, normalized to 
10,000 cells alive in each sample before the addition of vemurafenib. Error bars represent the standard error of the mean. b, To compare the frequency 
of nGFrHIGH/EGFrHIGH cells between WM989-A6-G3 and its daughter cell line WM989-A6-G3-Cas9-5a3, we looked at the distribution of expression 
of nGFr and EGFr using immunofluorescence. c, WM989-A6-G3-Cas9-5a3 cells expressing nGFr, EGFr, and both nGFr and EGFr are more likely 
to survive and proliferate in the presence of vemurafenib14. Here, we show the number of colonies that grew upon vemurafenib exposure in a mixed 
population of WM989-A6-G3-Cas9-5a3 or in the same population but enriched for EGFrHIGH cells, nGFrHIGH cells, or nGFrHIGH/EGFrHIGH cells. d, In this 
plot, we show the single guide rnA representation (as percent GFP-positive cells) of controls over time in WM989-A6-G3 cells with or without Cas9 
expression. negative controls (black) are single guide rnAs aimed at ROSA26, a non-expressing gene in human melanoma. Positive controls (red)  
target proteins necessary for cell viability. Only cells expressing both Cas9 and a positive control single guide rnA should disappear from the  
population over time.

NATuRE GENETICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NATuRE GENETICS

Extended Data Fig. 2 | Effect of negative and positive control single RNAs in the CRISPR screens. Our pooled CrISPr screen included non-targeting 
single guide rnAs as negative controls (gray bars, 50+ single guide rnAs) as well as single guide rnAs affecting cell viability as positive controls 
(red bars, 25+ single guide rnAs). We quantified the change in representation of these single guide rnAs over time and report the log2 fold change in 
representation from 6 days after transfection to right before selection (vemurafenib exposure or selection by nGFr and EGFr expression). We expect 
positive controls to lose representation over time more often than negative controls. Our screening scheme utilized three separate pooled single guide 
rnA libraries, one targeting kinases (top), another targeting epigenetic domains (middle), and a final one targeting transcription factors (bottom).
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Extended Data Fig. 3 | Secondary validation of hits across multiple cell lines by secondary targeted CRISPR screening. We assessed the robustness and 
generality of the effect of hits identified in the priming and resistance screens (WM989-A6-G3-Cas9-5a3, black bars) by carrying out secondary priming 
(left) and resistance screens (right) targeting 86 different proteins in WM989-A6-G3-Cas9 (orange bars) as well as in another BrAFV600E melanoma cell 
line (451Lu-Cas9, blue). On the left, we plot the log2 fold change in frequency of nGFrHIGH/EGFrHIGH cells (normalized by non-targeting controls) for each 
sgrnA (dots) targeting 34 of the high confidence hits (Tiers 1 and 2) we identified in the priming screen. We found that 25 of the 34 high confidence 
hits showed at least a two fold change (as a median across sgrnA triplicates; see Supplementary Table 4) in the frequency of nGFrHIGH/EGFrHIGH cells 
concordant with the effects detected in the original screening clonal cell line (WM989-A6-G3-Cas9-5a3). In 451Lu-Cas9 cells, 20 of the 34 targets also 
showed a change in the frequency of nGFrHIGH/EGFrHIGH cells, with 11 of those exhibiting at least a two-fold change (as a median across sgrnA triplicates; 
see Supplementary Table 4). On the right, we plot the log2 fold change in frequency of cells resistant to vemurafenib (normalized by non-targeting 
controls) for each sgrnA (dots) targeting 9 of the high confidence hits (Tiers 1 and 2) identified through the resistance screen. In WM989-A6-G3-Cas9, 
we found that 7 of the 9 targets replicated the effect we observed originally. For 451Lu-Cas9, the same 7 factors showed similar effects. Within each plot, 
the color of the target label indicates the effect observed in the primary screens. See Supplementary Table 4 for the results of Tier 3 and Tier 4 targets.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Screen for factors modulating number of resistant colonies upon BRAFV600E inhibition. a, We performed a pooled CrISPr screen 
to detect modulators of the number of drug-resistant cells that grow in the presence of the BrAFV600E inhibitor vemurafenib. After transducing a library 
of single guide rnAs and expanding the population, we exposed the cells to the BrAFV600E inhibitor vemurafenib (1 µM) for 3 weeks, after which we 
sequenced the single guide rnAs in the surviving population. Changes in the frequency of detection of a given single guide rnA indicates that its target 
may affect the ability of a cell to survive and proliferate upon BrAFV600E inhibition. b, After transfecting a population of melanoma cells, we exposed 
them to vemurafenib (BrAFV600E inhibitor, 1 μM) for 3 weeks to grow resistant colonies. We then sequenced the DnA to quantify the single guide rnA 
representation of each target in the resulting population, using the same libraries as in Fig. 1. As before, we ranked the targets into tiers based on the 
percent of single guide rnAs that exhibited at least a two-fold change in representation throughout the screen (Tier 1, ≥ 75%; Tier 2, ≥ 66%; Tier 3,  
≥ 50%; Tier 4, < 50%), thus reflecting the degree of confidence we have in the hit (High confidence hits: Tiers 1 and 2; Low confidence hits: Tiers 3 and 4). 
In this screen, we identified 24 high confidence factors. For a more detailed description, see the Methods section.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Validation of effects of hits from priming and resistance screens by via NGFR immunofluorescence and resistant colony 
formation. a, Frequency of nGFrHIGH cells following the knockout of select targets. Dots represent the change in number of nGFrHIGH cells (as the log2 fold 
change over non-targeting sgrnA controls). A star indicates targets where, after excluding samples with low cell numbers (< 500 cells), n = 1. Tier refers 
to the degree of confidence we have in each particular hit (see Methods). We performed this analysis for hits from both the priming screen (top) and the 
resistance screen (bottom). 21 of 34 high confidence showed at least a 50% increase or decrease in the frequency of nGFrHIGH cells (see Supplementary 
Table 4). 21 of 49 targets from Tiers 3 and 4 increased or decreased the frequency of nGFrHIGH cells by ≥ 50%. b, resistance phenotype of melanoma  
cells following the knockout of hits. Bars represent the log2 fold change over non-targeting control in the number colonies able to grow in vemurafenib.  
The number of colonies is normalized to the number of cells present before BrAFV600E inhibition (see Methods). In the left panel, we labeled in green and 
gray the effect a given target has on the frequency of nGFrHIGH/EGFrHIGH cells (based on the initial priming screen). In the right panel, we labeled in red and 
gray the effect a given target has on the number of cells that resist BrAFV600E inhibition (based on the initial resistance screen). Each bar represents one 
experimental replicate (see Extended Data Fig. 6b for replicates). c, These images show the effect of CSK knockout on a cell’s ability to develop resistance 
to BrAFV600E inhibition. We exposed CSK-knockout WM989-A6-G3-Cas9-5a3 cells to 1 μM vemurafenib for 3 weeks and counted the number of resulting 
colonies. The number of resistant cells is too large to accurately identify individual colonies; thus, the number of colonies reported is an underestimate.
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Extended Data Fig. 6 | Validation of effects of hits by resistant colony formation. a, Effect of vemurafenib concentration on the formation of 
drug-resistant colonies. The dots represent the number of resistant colonies that grow after 3 weeks of treatment with 1 μM, 2 μM, or 4 μM of PLX4032 
(vemurafenib). The bars represent the mean over three biological replicates. Error bars represent the standard error. At each concentration, we treated 
cells that contain either a non-targeting sgrnA, or a sgrnA targeting DOT1L, LATS2, or BRD2. b, resistance phenotype of melanoma cells following the 
knockout of hits from the initial screens. Each bar represents the log2 fold change over non-targeting control in the number of colonies able to grow 
following knockout of the gene indicated. The number of colonies for each target is normalized to the number of cells present in culture before BrAFV600E 
inhibition, reported as number of colonies per every 10,000 pre-treatment cells (see Methods). As before, the different tiers represent the percent of 
single guide rnAs against a given target exhibiting at least a two-fold change throughout the initial (top) priming or (bottom) resistance screens. In the 
top panel, we labeled in green and gray the effect a given target has in the frequency of nGFrHIGH/EGFrHIGH cells (based on the initial priming screen).  
In the bottom panel, we labeled in red and gray the effect a given target has in the number of cells that resist BrAFV600E inhibition (based on the resistance 
screen). In this plot, each bar represents one experimental replicate (distinct from the one in Extended Data Fig. 5b).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Effect of pharmacological inhibition of DOT1L on resistance to BRAFV600E and MEK inhibition. a, resistance phenotype 
of melanoma cells following pharmacological inhibition of DOT1L. We pre-treated melanoma cells for seven days with either DMSO, or various 
concentrations of the DOT1L inhibitor pinometostat (EPZ5676). Then, we exposed the cells to 1 μM vemurafenib for 3 weeks. b, To assess the effect of 
DOT1L inhibition on cellular proliferation, we compared the population size of WM989-A6-G3 cells over time treated with either 4 μM of pinometostat 
(DOT1L inhibitor) or DMSO. The population size is estimated by the amount of nucleic acids present in the population using a CyQuant Gr dye. The 
values represent mean fluorescent signal over triplicates. Error bars represent standard error of the mean. c, resistance phenotype of melanoma cells to 
BrAFV600E and MEK inhibitors following pharmacological inhibition of DOT1L. We pre-treated melanoma cells for seven days with either DMSO or 4 μM 
of pinometostat. We then exposed the cells to one of two BrAFV600E inhibitors (vemurafenib and dabrafenib, left panels), to one of two MEK inhibitors 
(cobimetinib and trametinib, middle panels), or to a combination of a BrAFV600E and MEK inhibitor (vemurafenib + cobimetinib; dabrafenib + trametinib, 
right panels). White arrows point to a few of the many colonies that grew under each condition.
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Extended Data Fig. 8 | Percent of targets from the priming screen that validate. To assess the sensitivity of our screen, we validated the effect observed 
in the initial priming screen for a select group of targets via nGFr immunofluorescence. Here, each dot represents an individual single guide rnA, and 
we plot the change in single guide rnA representation between nGFrHIGH/EGFrHIGH cells and controls (as measured in the priming screen). We then 
organize all sgrnAs into tiers (y-axis, Tiers 1 through 4) based on the percent of single guide rnAs against a target showing at least a two-fold change in 
representation on nGFrHIGH/EGFrHIGH cells. In red, we labeled targets that when tested again produced at least a 50% change in the frequency of nGFrHIGH 
cells. In black, we labeled targets that we tested but did not validate, and in gray we show targets we did not test. We display the percent of genes tested 
and validated at each tier on the right.
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Extended Data Fig. 9 | Percent of targets from the resistance screen that validate. To assess the sensitivity of our screen, we validated the effect 
observed in the initial resistance screen for a select group of targets via colony formation assays. Here, each dot represents an individual single guide rnA, 
and we plot the change in single guide rnA representation between cells resistant to vemurafenib and cells that have never been exposed to the drug (as 
measured in the resistance screen). We then organize all single guide rnAs into tiers (y-axis, Tiers 1 through 4) based on the percent of single guide rnAs 
against a target showing at least a two-fold change in representation on drug resistant cells. In red, we labeled targets that when tested again produced at 
least a 50% change in the frequency colonies resistant to BrAFV600E inhibition. In black, we labeled targets that we tested but did not validate, and in gray 
we show targets we did not test. We display the percent of genes tested and validated at each tier on the right.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Transcriptional effects induced by knockout of select screen targets. a, The heatmap represents the biclustering analysis of 
different screen targets (rows) based on the change in expression of all genes differentially expressed in at least one knockout (columns). Within the 
heatmap, red indicates an increase in expression following the knockout, while blue indicates a decrease in gene expression (see heatmap color key). Each 
target (rows) represents transcriptomes of biological triplicates (unless otherwise stated in Supplementary Table 4). Target labels (rows) in green indicate 
genes whose knockout increased the frequency of nGFrHIGH/EGFrHIGH cells in the initial screen. In red are those whose knockout increased the number of 
cells resistant to vemurafenib, and in gray are those that decreased the frequency of either nGFrHIGH/EGFrHIGH cells or of cells resistant to vemurafenib. 
As before, we organized targets into confidence tiers indicated by the number of asterisks, based on the percent of single guide rnAs against that target 
that showed an effect in the initial screen (see knockout color key). b, We performed principal component analysis of the transcriptional effects induced by 
the knockout of select screen targets. We used as input the gene set enrichment scores from Fig. 5a to identify primary axes that account for the greatest 
degree of transcriptome variability across knockout cell lines. The color indicates the effect of the knockout in the initial priming screen. The size of the dot 
indicates the degree of confidence we have in each particular hit based on the percent of the single guide rnAs against a target that passed a threshold of 
two-fold change in the initial priming screen. In black, we labeled melanoma cells where we did not knockout any targets but either enriched for EGFrHIGH 
cells, nGFrHIGH cells, EGFrHIGH/nGFrHIGH cells, or for cells resistant to vemurafenib.
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Data collection Microscopy data was collected using Metamorph and Elements, both commercially available. RNA-sequencing data was collected using 
Illumina NextSeq 500 sequencers and their accompanying software. gRNA sequencing data was collected using Illumina MiSeq 
instruments and their accompanying software. 

Data analysis Initial mapping of RNA sequencing data was done with open source code as described in the manuscript. All custom code used in this 
work can be found at https://github.com/edatorre/2020_TorreEtAl_data.git  
The software used for image analysis can be found at: https://github.com/arjunrajlaboratory 
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- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data used in this work can be found at: https://www.dropbox.com/sh/t08558cl4mepfm6/AABBvbtlTPSNNPoMC9NTro-9a?dl=0 
RNA-sequencing data was also deposited on GEO (GSE151825, GSE149280). The gene sets used for analysis were obtained at https://www.gsea-msigdb.org/gsea/
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Sample size For the primary screen, each gene was targeted with n > 6 gRNAs, which is a conservative standard in the field. Given that our targetted 
screen served a purpose of validation rather than discovery, and given the limitations imposed by studying rare-cell phenomena, we limited 
the targetted screen to n = 3 sgRNAs per target. Given that our in vivo study was a pilot study for which we did not have any prior information 
regarding potential effect size and variability, we did not carry out a sample size estimate. For that study, we included n = 6 mice per study 
group and treatment arm. We compared groups up until time points where both arms being compared had n >= 3.  

Data exclusions During our analysis, we excluded samples of poor quality or that represented a technical error. Specifically (1) throughout the analysis of 
NGFR-high frequency via immunofluorescence (Supplemental Figure 5) we excluded from the analysis of any sample that contained less than 
500 cells given that we were calculating the frequency of an infrequent phenotype and thus a small population size would lead to misleading 
results. (2) During our transcriptomic analysis, we excluded from the very beginning any RNA-seq sample that was poorly represented in the 
data pool because low coverage of these samples could lead to apparent changes in gene expression that are rather a technical artifact due to 
poor sampling. (3) During our in vivo assays, we excluded two mice. One mouse (mouse_39) was excluded because it contained two tumors 
that merged, leading to difficulty in quantifying the trend of a single tumor. The other exclusion (“mouse_46”) was done because over the 
course of days the tumor volume recorded decreased by >90% and then increased 10-fold, which is suggestive of a technical error in 
quantification rather than a biological effect. 

Replication The results of our experiments were validated in a variety of ways, always clearly indicated in the manuscript. The results from the primary 
screen were validated within the screen with sgRNAs targeting the same gene and outside the screen also with a secondary targeted screen. 
Immunofluorescence data was validated with biological triplicates using different sgRNAs (unless otherwise stated). Similarly, the 
transcriptomic data presented was validated with biological triplicates using different sgRNAs (unless otherwise stated). Replication efforts for 
each experiment are detailed throughout the manuscript.

Randomization For the immunofluorescence experiments, all samples were randomly assigned a unique identifier that served to randomize the position of 
the samples throughout the workflow of staining and imaging. Similarly, to address batch effects, all transcriptomic samples were randomized 
across several 96-well plates. Then the sequencing libraries were built. For our in vivo experiments, we randomly assigned unique identifiers 
to each mice and distributed those numbers into each tumor group. For each tumor group, then we randomly assigned half of the mice to 
one of the treatment arms and the rest to the other treatment arm. 

Blinding In the study the investigators collecting the tumor growth data were not aware of the hypothesized drug response of each tumor group. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used anti-NGFR APC-labelled clone ME20.4 (Biolegend, 345107); anti-EGFR antibody clone 225 (Millipore, MABF120), donkey anti-

mouse IgG-Alexa Cy3 (Jackson Laboratories, 715-545-150)

Validation The anti-EGFR antibody clone 225 and the donkey anti-mouse IgG-Alexa Cy3 (Jackson Laboratories, 715-545-150) antibody were 
both validated for use in human WM989 melanoma cells by first performing the immunostains as described in the manuscript. 
Cells labeled as EGFR-high (based on immunofluorescence) cells were then separated from EGFR-low cells via FACS. Then, the 
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resulting subpopulations were fixed and RNA FISH using probes targeting EGFR transcripts was performed. Using microscopy we 
verified that the cells labeled as EGFR-high via immunofluorescence also contained high EGFR transcript levels. The NGFR 
antibody was validated for use in human WM989 cells using the same approach. 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) We obtained patient-derived melanoma cells (WM989 and 451Lu, female and male, respectively) from the lab of Meenhard 
Herlyn. The HEK293T cells used for viral production were originally obtained from the lab of Junwei Shi.

Authentication We authenticated all cell lines via Human STR profiling.

Mycoplasma contamination All cell lines tested negative for mycoplasma.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in the study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals NOD/SCID mice (Charles River Laboratories, Wilmington, MA). Throughout the experiments, the animal facility holding rooms 
were maintained between 70-73F and a humidity of 30-35%. The animal holding room light schedules were on a 12 hour on and 
a 12 hour off schedule with lights coming on at 6:00 am and off at 6:00 pm. 

Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All animal experiments were approved by Wistar's Institutional Animal Care and Use Committee (IACUC) (IACUC #112503X_0) 
and were performed in an Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC) accredited 
facility.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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