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In Brief

Non-genetic transcriptional variability,

characterized by transient and

coordinated high expression of several

genes in rare cancer cells, can drive

resistance to targeted therapy. Schuh

et al. use a combination of theory and

network modeling to demonstrate that

established principles of transcription

and gene regulation are sufficient to

describe the origins of this behavior.
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SUMMARY
Non-genetic transcriptional variability is a potential mechanism for therapy resistance in melanoma. Specif-
ically, rare subpopulations of cells occupy a transient pre-resistant state characterized by coordinated high
expression of several genes and survive therapy. Howmight these rare states arise and disappear within the
population? It is unclear whether the canonical models of probabilistic transcriptional pulsing can explain this
behavior, or if it requires special, hitherto unidentified mechanisms. We show that a minimal model of tran-
scriptional bursting and gene interactions can give rise to rare coordinated high expression states. These
states occur more frequently in networks with low connectivity and depend on three parameters. While entry
into these states is initiated by a long transcriptional burst that also triggers entry of other genes, the exit oc-
curs through independent inactivation of individual genes. Together, we demonstrate that established prin-
ciples of gene regulation are sufficient to describe this behavior and argue for its more general existence. A
record of this paper’s transparent peer review process is included in the Supplemental Information.
INTRODUCTION

Cellular heterogeneity has been reported to arise from non-ge-

netic transcriptional variability, even in clonal, genetically homo-

geneous cells grown in identical conditions (Spencer et al., 2009;

Sharma et al., 2010, 2018; Gupta et al., 2011; Pisco and Huang,

2015; Fallahi-Sichani et al., 2017; Shaffer et al., 2017; Su et al.,

2017). Cells exhibiting these non-genetic deviations are resistant

to anti-cancer drugs (e.g., Ras pathway inhibitors) and may lead

to relapse in patients. For example, in a drug-naive melanoma

population, a small fraction (�1 in 3,000) of cells are pre-resis-

tant, meaning they are able to survive targeted drug therapy, re-

sulting in their uncontrolled cellular proliferation (Shaffer et al.,

2017). These rare pre-resistant cells are marked by transient

and coordinated high expression of dozens of marker genes.

In other words, several genes are highly expressed simulta-

neously in a rare subset of cells, whereas the rest of the popula-

tion have low or zero counts of mRNAs for these genes, resulting

in a distribution of steady state mRNA counts per cell that peaks

at or close to zero and has heavy tails.

The rare cells in the tails, which transiently arise and disappear

in the population by switching their gene expression state (Fig-
ure 1A), are much more likely to develop resistance to targeted

therapies. The rare and coordinated large fluctuations in the

expression of multiple genes persist for several generations.

Classical probabilistic models of gene expression have pre-

dicted the possibility of various types of mRNA expression distri-

butions across a population, including normal, lognormal,

gamma, or heavy-tail distributions (Thattai and van Oudenaar-

den, 2001; Golding et al., 2005; Raj et al., 2006; Raj and van Ou-

denaarden, 2008; Iyer-Biswas et al., 2009; So et al., 2011; Chen

and Larson, 2016; Corrigan et al., 2016; Symmons andRaj, 2016;

Antolovi�c et al., 2017; Ham et al., 2019, 2020). It is unclear if such

models can recapitulate the non-genetic variability character-

ized by rare and transient high expression states for several

genes simultaneously (from now on referred to as ‘‘rare coordi-

nated high states’’), and if so, under what conditions.

Might a stochastic system of interacting genes inside the

cell facilitate transition in and out of the rare coordinated

high state? One hypothesis is that only a rare set of unique

(and perhaps complex) networks can facilitate reversible tran-

sitions into the rare coordinated high states. Alternatively,

relatively generic gene regulatory networks may be capable

of producing such behaviors, suggesting that a large
Cell Systems 10, 363–378, April 22, 2020 ª 2020 Elsevier Inc. 363

mailto:yogesh.goyal0308@gmail.com
https://doi.org/10.1016/j.cels.2020.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2020.03.004&domain=pdf


ge
ne

 p
ro

du
ct

 (1
03

)

F

0

1.8

A t = t1

0
1

0
0

t = t2

4
0

0
0

stablet = t0

1
0

0
0

gene 1
gene 2
gene 3
gene 4

4

number of
overexpressed
marker genes

time

resistance

C

class II: stably high expressionE

0

5.0

G

0

2.5

add drug

ge
ne

 p
ro

du
ct

t0 t1 t2

radd

n

0

1

k

gene productn

kn+ gene productn

gene product

product

rprod
rdeg

gene

gene A
gene B

B
model 1: constitutive model

radd

n

0

1

k

gene productn

kn+ gene productn

gene product

productrprod

rdeg

gene

gene A gene B

off

on
d x rprod

off

on

model 2: transcriptional bursting model

D

0

class I: stably low expression
3.5

ge
ne

 p
ro

du
ct

 (1
02

)

class III: uncoordinated transient 
high expression

ge
ne

 p
ro

du
ct

 (1
03

)

class IV: rare transient coordinated 
high expression

ge
ne

 p
ro

du
ct

 (1
02

)

time time timetime time time
0 0 00 0 0 1000 1000 10001000 1000 1000100010001000

Figure 1. A Transcriptional Bursting Model Is Able to Mimic the Rare Coordinated High States Observed in Drug Naive Melanoma

(A) Drug-naive melanoma cells exist in low (white cells) as well as rare coordinated high (blue cells) expression states. Cells in the rare coordinated high state

characterize the pre-resistant state observed in drug-naive melanoma. A schematic of the corresponding expression pattern is shown in the panel below. The

cells in a high expression state are more likely to survive and acquire resistance upon drug administration.

(B) Schematic of the constitutivemodel for two nodes. Gene product is either produced at rate rprod or degradedwith rate rdeg. Gene regulation ismodeled by aHill

function, where the gene product count of the regulating gene A increases the production rate of the gene product of the regulated gene B.

(C) Schematic of the transcriptional bursting model for two nodes. DNA is either in an inactive (off) or active (on) state. Transitions take place with rates ron and roff,

where gene product is synthesized with rates rpod and d*rprod, respectively, d > 1. Gene product degrades with rate rdeg. Gene regulation is modeled by a Hill

function, where the gene expression of the regulating gene A increases the activation of the DNA of the regulated gene B.

(D–G) Depending on the network and the parameters of the transcriptional bursting model, we observe stably low expression (D), stably high expression (E),

uncoordinated transient high expression (F), and rare transient coordinated high expression (G). See also Figure S1.
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ensemble of such networks may admit rare cell formation.

Both of these scenarios have different implications—for

instance, the latter hypothesis suggests that this behavior

could be more common in biological systems than hitherto

appreciated. The alternatives described above can also be

posed in terms of the nature of model parameters—whether
364 Cell Systems 10, 363–378, April 22, 2020
the set of values that give rise to rare coordinated high states

are constrained to lie within a narrow window of parameter

space or whether such behavior may occur across broad

swaths of parameter space. Yet another possibility is that sto-

chastic gene expression alone fails to produce rare coordi-

nated high states in the absence of additional regulation. In
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that case, one may argue that the reversible transition into the

rare coordinated high state is driven by highly specialized pro-

cesses (e.g., initiated by a master regulator) or other unknown

mechanisms. Exploring these possibilities will provide poten-

tial transcriptional mechanisms that can recapitulate the

occurrence of rare coordinated high states.

Here,wedescribeamathematical framework to test thehypoth-

eses proposed above for the appearance and disappearance of

rare coordinated high states (Box 1). Recent studies from our lab

suggest that no particular molecular pathway is solely responsible

for the formation of these rarecells (Shaffer et al., 2018; Torre et al.,

2019). Specifically, in these rare cells, a sequencing- and imaging-

based scheme identified a collection of marker genes, which are

targets of multiple signaling pathways ranging from type 1 inter-

feron to PI3K-Akt signaling. The implication is that instead of a sin-

gle signaling pathway leading to the observed behavior, a network

of interacting genes appears to be responsible. Accordingly, we

used network modeling to see whether genes interacting within a

network were capable of producing transitions to coordinated

high expression states. We systematically formulated and simu-

lated networks of increasing size and complexity defined by a

broad range for all independent parameters (Boxes 1 and 2;

STAR Methods, sections Networks and Parameters).

Computational screens on more than 96 million simulated cells

reveal that many networks with interactions between genes are

capable of producing rare coordinated high states. Critically, tran-

scriptional bursting, a ubiquitous phenomenon in which genes flip

between transcriptionally active and inactive states, is necessary

to produce these rare coordinated high states within the context

of our models. Subsequent quantitative analysis shows that rare

coordinated high states occur across networks of all sizes inves-

tigated (up to 10 nodes), but that (1) they depend on three (out of

seven) independent model parameters and (2) their frequency of

occurrence decreases monotonically with increasing network

connectivity. The transition into the rare coordinated high state

is initiated by a long transcriptional burst, which, in turn, triggers

the entry of subsequent genes into the rare coordinated high state.

In contrast, the transition out of the rare coordinated high state is

independent of the duration of transcriptional bursts, rather it hap-

pens through the independent inactivation of individual genes.We

also confirm model predictions using experimental gene expres-

sion data (RNA fluorescence in situ hybridization [FISH] data)

taken from melanoma cell lines. Together, we demonstrate that

the standard model of stochastic gene regulation with transcrip-

tional bursting is capable of producing rare coordinated high

states in the absence of additional regulation.

RESULTS

Framework Selection
Identifying the Minimal Network Model Generating Rare

Coordinated High States

We focused on a network-based mathematical framework that

models cell-intrinsic biochemical interactions and wondered

what would be the minimal set of biochemical reactions that con-

stitutes it. Since network models comprised of only constitutively

expressed genes were not able to produce rare coordinated high

states (Figures 1B, S1A, and S1B; STAR Methods, section

Models), we use a leaky telegraph model as the building block
of our framework. In terms of chemical reactions, a gene can

reversibly switch between an active (ron) and inactive state (roff),

where binding of the transcription factor at a gene locus controls

the effective rate of gene production (Figure 1C; Box 1; STAR

Methods). Specifically, when inactive (or unbound), the gene is

transcribed as a Poisson process at a low basal rate (rprod);

when active, the rate becomes higher (d 3 rprod, where d > 1).

We modeled degradation of the gene product as a Poisson pro-

cesswith degradation rate rdeg. The inter-node interaction param-

eter, radd, has a Hill-function-based dependency on the gene

product amount (Hill coefficient n) of the respective regulating

node to account for the multistep nature of the interaction (Fig-

ure 1C). In particular, we lump steps leading to transcription by im-

plementing the commonly used quasi-equilibrium assumption

(Phillips et al., 2019), where binding and unbinding occurs much

faster thanmRNA transcription and degradation. The dissociation

constant k of the Hill function is dependent on the parameters

rprod, rdeg, and d, such that kðrprod; rdeg;dÞ = 0:95$d$
rprod
rdeg

. In total,

the model has seven independent and one dependent model pa-

rameters, as outlined in Box 1. All chemical reactions, propen-

sities, and model parameters are presented in STAR Methods.

We used Gillespie’s stochastic simulation algorithm (Gillespie,

1977) to systematically simulate networks of various sizes and ar-

chitectures across a broad range of parameters (Box 1; STAR

Methods, sections Networks and Parameters).

We limited our study to networks that are symmetric, i.e., net-

workswithout a hierarchical structure (Box1; STARMethods, sec-

tion Networks; Figure S1C). We also excluded networks that are

compositions of independent subnetworks (non-weakly-con-

nected networks) and networks that can be formed by structure-

preserving bijections of other networks (isomorphic networks)

(STARMethods, section Networks; Box 1). These choices reduce

the testable space of unique networks by several orders ofmagni-

tude (Figure S1C) and allow for comparisons of parameters be-

tween networks of different sizes. They also are a conservative

starting point for our analysis given experimental observations.

In the frequencymatrix for experimentalRNAFISHdatadescribing

the rare high state in drug-naive melanoma, in which each entry

corresponds to the fractionof cellswith eachgenepair being high-

ly expressed (Figure S1D) (Shaffer et al., 2017, 2018), we do not

observe a clear directionality of regulation or hierarchical structure

within thehighlyexpressedgenes.Whilesimulatedsymmetricnet-

works can recapitulate this experimental observation, asymmetric

networkscan result in frequencymatricesbeinghighlyasymmetric

(Figures S1E and S1F). For these reasons, we restricted our initial

analysis to symmetrical networks.

Characterization of the Transcriptional Bursting Model

When genes are organized in the system described above and

simulated over long intervals, the transcriptional bursting model

produced a range of temporal profiles for gene products (Figures

1D–1G and S2A). The model was able to faithfully capture the

qualitative features of experimental data, i.e., rare, transient,

and coordinated high expression states (Figure 1G). We defined

a set of rules to screen for the occurrence of different classes of

states (Figures 1D–1G and S2A); these include stably low

expression (class I), stably high expression (class II), uncoordi-

nated transient high expression (class III), and rare transient co-

ordinated high expression (class IV) (see STARMethods, section

Simulation Classes), and used a heuristic approach to
Cell Systems 10, 363–378, April 22, 2020 365



Box 1. Model Description, Assumptions, Parameters, and Definitions

MODEL DESCRIPTION

The transcriptional bursting model is comprised of single-gene expression modules described by the telegraph model: the DNA

can take on an active and inactive state and transcribe mRNA at high and low rates (transcriptional bursting), respectively. These

expression modules are coupled by an underlying network architecture, where regulation is modeled by a Hill function: the regu-

lating gene influences the activation rate ron of the respective regulated gene. The chemical reactions and propensities are

described below:

Chemical Reaction Reaction Propensity

I/A

�
ron + radd $

mRNAn
X

kn +mRNAn
X

�
$I

A/I roff$A

I/I + mRNA rprod$I

A/A + mRNA d$rprod$A

mRNA/B rdeg$mRNA

where I,A˛ {0,1}, and I + A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state and I = 1 (A = 0) denotes that the DNA is

in an inactive state. mRNAX is the mRNA count of gene X at the given time. The model aims to recapitulate rare coordinated high

states, where ‘‘rare’’ means that at the population level the expression distributions are unimodal and exhibit heavy tails; ‘‘coor-

dinated’’ means that at least once throughout a simulation more than half the genes (nodes) show mRNA expressions above a

specified threshold simultaneously; and ‘‘high’’ means that the mRNA expression of a gene exceeds a specified threshold (thres).

MODEL ASSUMPTIONS

(1) mRNA is able to influence the gene expression of its regulated gene directly, hencewe refer to it as gene product throughout this

work; (2) all genes are relationally identical (weakly-connected, non-isomorphic, and symmetric gene regulatory networks); (3) all

genes share the same model parameters; (4) gene regulation is only considered to be activating; and (5) if regulation occurs from

several genes, their effects are additive. We discuss and check the generality of our model by testing many of these assumptions

on a subset of cases, as described in Box 2.

PARAMETERS

The model is described by 8 model parameters, as defined in the table below along with the corresponding ranges.

Parameters Sampling Range

Independent Model Parameters

ron The rate at which DNA is activated. 0.001–0.1

roff The rate at which DNA is inactivated. 0.01–0.1

rprod Synthesis rate of gene product. 0.01–1

rdeg Degradation rate of gene product. 0.001–0.1

radd Parameter determining the contribution of the additional DNA

activation rate upon gene regulation.

0.1–1

d Factor by which the mRNA synthesis rate is increased when in an

active DNA state. d > 1.

2–100

n Hill coefficient. 0.1–10

Dependent Model Parameters

k* Dissociation constant of the Hill function, where kðrprod; rdeg;
dÞ = 0:95$d$

rprod
rdeg

-

Dependent Classification Parameters

thres** Threshold above which a gene is thought of being highly expressed,

where thres = 0:8$d$
rprod
rdeg

-

(Continued on next page)
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Box 1. Continued

Here, rprod/rdeg is the steady state in the baseline expression state (when there is no transcriptional burst), and d*rprod/rdeg is the

steady state in the high expression state (if the DNA would continuously be in the active state).

MODEL DEFINITIONS

d Weakly connected network: a directed network that when replacing the directed edges by undirected ones produces a con-

nected graph in which every pair of nodes is connected by a path.

d Non-isomorphic: two graphs are called non-isomorphic if there exists no structure-preserving bijection between them.

d Symmetric: within a graph the number of in- and outgoing edges of a node and across nodes is identical and either all nodes

in a network have a self-loop or not.

d Rare coordinated high state: (1) at least once within a simulation more than half the genes are highly expressed simulta-

neously, (2) the histogram of simultaneously highly expressed genes at the population level decreases, and (3) the gene

expression distributions at the population level are heavy-tailed.

d Connectivity: number of ingoing edges for any node of the network.

d Characteristic distance: the average shortest path length between pairs of nodes of the network.

*The parameter k is dependent on the parameters rprod, rdeg, and d, such that: kðrprod;rdeg;dÞ = x$d$
rprod
rdeg

, where x ˛ {0.75, 0.8, 0.85,

0.9, 0.95, 1}, which ensures a consistent definition of k throughout the network architectures and parameter sets. Here, x repre-

sents the fraction of the value corresponding to the steady state value in the high expression state. We showed that for x = 0.75,

none of the 100 simulations show rare coordinated gene expression because the threshold resulting in an effective gene regulation

is exceeded too often—the regulated DNA states are activatedmore frequently leading to the high gene expression states and loss

of rareness of the coordinated high gene expression event (leading to bimodal distributions). For x > 0.75, there is an increase in the

number of simulations showing rare behavior, peaking at x = 0.95. Furthermore, throughout different values of x, the same param-

eter sets give rise to rare coordinated high states. We take x = 0.95 to maximize the number of simulations positive for the rare

coordinated high states.

**We test several values for the threshold abovewhich a gene is highly expressed: thres = y$d$
rprod
rdeg

, where y˛ {0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}. For all y R 0.6, the set of simulations showing rare coordinated high states

largely remains the same. Even for y = 0.3, half of the simulations identified previously to show rare behavior are still classified as

such. We chose x = 0.8. Though arbitrarily chosen, the choice of x = 0.8 will not change the conclusions of our analysis.
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distinguish between these different classes (Boxes 1 and 2). For

a detailed description of the rules and quantitative metrics used

to define class IV, see Boxes 1 and 2; Figures S3 and S4; STAR

Methods, section Simulation Classes.

To better compare the computational results with the experi-

mental data from static RNA FISH images, we split the entire

simulation into non-overlapping time intervals of 1,000 time

units, as justified by the ergodic theory (Box 2; STAR Methods)

(Van Kampen, 1992). We took snapshots of gene products at

randomly selected time-points in these time intervals and noted

the number of simultaneously highly expressed genes as well as

their gene product counts, allowing us to represent the static

states of a population of simulated cells (Figure 2A). For example,

in a particular 8-node network, we found that the distribution

qualitatively captures the experimental observations where

most cells do not exhibit high expression states, whereas

some cells are in a high state for one or more genes (Figure 2B).

Similarly, when we selected a gene and plotted its product count

for the randomly selected time-points, we observed a heavy-

tailed distribution (Figure 2C, right panel), similar to the experi-

mental observations (Figure 2C, left panel). These observations,

while shown for a particular 8-node network, also hold true for

simulations of other 8-node networks as well as networks of

other sizes (Figure S2B).

Note that the simulated distributions of gene product

counts for each gene are qualitatively similar because each

gene is equivalent within our symmetrical networks (Fig-
ure S2C). This is not biologically realistic; the experimental

data in drug-naive melanoma cells for mRNA counts display

different degrees of skewness of the distribution for different

genes (e.g., epidermal growth factor receptor [EGFR] versus

Jun, Figure S3A) (Shaffer et al., 2017). These experimental

observations can be recapitulated in the simulated networks

by introducing asymmetries. For example, two asymmetric

networks we tested were able to produce rare coordinated

high states (Figures S2G–S4M) and distributions of gene

product counts with different degrees of skewness (Fig-

ure S2M). When experimentally observed expression distri-

butions (Figure S3A) are compared to simulated expression

distributions using Gini coefficients, we observe that while

the Gini coefficient is low for most of the simulations

(99.2%, gray), it is much higher for the simulations that pro-

duce rare coordinated high states (red) and overlaps with

experimental Gini coefficients observed for individual genes

(Figure 2D). In total, these observations suggest that a simple

transcriptional bursting model is able to produce states that

recapitulate key aspects of rare coordinated high states

observed in drug-naive melanoma.

Rare Coordinated High States Depend on Network
Topologies and Model Parameters
Since the rare coordinated high states occur in <1% of all simu-

lations (Figure S2A), we wondered whether their occurrence de-

pends on the network topologies and/or model parameters.
Cell Systems 10, 363–378, April 22, 2020 367



Box 2. Relaxing Model Assumptions

PROTEIN TRANSLATION

The original transcriptional burstingmodel does not include a step for translation and is assumed to be captured by the Hill function

term which not only greatly reduces the computational costs of long stochastic simulations but also allows for analyzing smaller

sets of parameters. To check if our model can produce rare coordinate high states even when the model includes the translation

step, we focused on a particular network (5.3) and associated parameter values that give rise to these states in the original model.

We show that for specific rates of translation and protein degradation (STARMethods), the model including translation exhibits the

rare coordinated high states.

NETWORK ARCHITECTURES

By reducing the network architectures to weakly connected, non-isomorphic, and symmetric networks, we systematically reduce

the number of possible network architectures. The reduced space of networks is partly supported by experimental observations

(Shaffer et al., 2017, 2018), reporting that (1) there is no obvious hierarchical relationship between the expressed genes; and (2) no

particular signaling pathway appears to be solely responsible for the observed behavior (see also Figure S1D). Furthermore, these

network architectures allow for direct comparisons between network sizes, connectivities, and parameter sets (not a given for

other topologies). Although the analysis here primarily focuses on the constrained set of network architectures, we show for a sub-

set of cases (STARMethods) that asymmetric network architectures can also exhibit rare coordinated high gene expression states

(Figures S2G–S2I), paving the way for a more systematic analysis in the future studies.

MODEL PARAMETERS

While we primarily focus on keeping the same parameter set for each node, we analyzed a subset of networks with asymmetric

parameters (STAR Methods) such that each node had distinct underlying parameter sets. We show that a model with asymmetric

parameter sets is also capable of producing rare coordinated high gene expression states (Figures S2J–S2M).

MULTI-GENE REGULATORY EFFECTS

The joint regulatory effects experienced by a gene, which is regulated by several other genes, can be modeled using different ap-

proaches. While the majority of analysis here uses an additive model of joint-regulation, we performed a subset of simulations

(STAR Methods) for cases where the regulation by multiple gene nodes is multiplicative (Figures S4C and S4E). We find that for

network architecture 5.3, 15 and 97 out of 1,000 parameter sets give rise to simulations with rare coordinated high states in the

additive and multiplicative joint-regulation, respectively (Figure S4D). Nine simulations are found to show rare coordinated high

states in both definitions of multi-gene regulation.

DEFINING MODEL-OUTPUT METRICS

Population Level—Sub-simulation Size to Determine a Single Cell
To qualitatively compare our results to experimental data, we convert the 1,000,000 time units long single-cell simulation to 1,000

single-cell sub-simulations of length 1,000 time units. We show that the simulations are largely (88.2%) uncorrelated after 1,000

time units, justifying our analysis (STAR Methods).

Heavy-tails
We test different levels of stringency in our definition of heavy-tailed or sub-exponential distributions. The analysis in Figures 2 and

3 is performed using the criteria described in STAR Methods, section Simulation Classes. We perform further analysis similar to

Figures 2 and 3 by usingmore stringent definitions, i.e., fit exponentials and compare the 99th percentiles (Figure S3C).We demon-

strate that these results and conclusions are similar to the ones obtained using less stringent criteria (Box 1) shown in Figures 2 and

3 (see Figures S4F–S4M). For example, 6 and 7 out of 8 rare coordinated high parameter sets also appear in the twomore stringent

analyses (Figures S4H and S4L). We further validate that our model recapitulates the experimentally observed heavy-tails by

comparing the Gini coefficients (Jiang et al., 2016) of experimental and model distributions (Figure 2D).

NUMBER OF NODES HIGHLY EXPRESSED TO BE CALLED A ‘‘COORDINATED’’ STATE

We define a simulation to show coordinated high gene expression if at least once throughout the simulation more than half of the

gene product counts exceed the threshold. Furthermore, we show that for different node counts (2, 3, 4, 5) the number of simu-

lations showing rare coordinated high states does not vary significantly. As an example, for a count of 2, we get 6 out of 100

(Continued on next page)
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Box 2. Continued

simulations showing rare behavior; for a count of 3, we get 7. Note that the sets of simulations were overlapping between different

scenarios.

DEFINITION OF RARE COORDINATED HIGH PARAMETER SETS

We define rare coordinated high parameter sets as parameter sets showing rare coordinated high expression in R 20% of all 96

networks. The threshold was defined by inspecting the histogram (Figure 3A), where we see a separation at 20%. Notably, the

same rare coordinated high parameter sets also appear in other analyses—they show increased frequencies of simulations

with rare coordinated high states when considering the network sizes separately (Figure S6A). Additionally, stricter definitions

for heavy-tailed expression distributions result in similar rare coordinated high parameter sets (Figures S4H and S4L).

BOOTSTRAPPING CONTROLS IN PHIXER ALGORITHM

As the number of connections predicted by the Phixer algorithm can depend on the sample size, we bootstrapped the original data

set into 4,000-sample datasets. The number 4,000 was chosen arbitrarily; bootstrapped sample sizes of 1,000, 2,000, and 6,000

also produced qualitatively similar results.

EDGE WEIGHT IN PHIXER ALGORITHM

We created a randomized control consisting of permutations of each gene column from the original dataset. We then performed

the Phixer analysis on these randomized controls. The resulting edge weight distributions give us a baseline or control edge weight

for Phixer that, in principle, reflects potential false positives. We found that in the controls, nearly all of the predicted edge weights

were below 0.45 (Figure S8B). Therefore, we decided to choose 0.45 as a threshold for our non-control analysis, thus eliminating

edges that could have been predicted by chance alone.

ll
Article
Specifically, what are the features of the topologies and

parameters that facilitate the occurrence of rare coordinated

high states? For the simulations that produced rare coordinated

high states, we extracted and quantitatively analyzed the

corresponding networks. We found that the rare coordinated

high states occur ubiquitously in networks with different

numbers of nodes analyzed (up to 10 nodes) (Figures 2E, S2B–

S2F, S5A, and S5B). Within a particular network size, the ability

to produce rare coordinated high states decreases monotoni-

cally with increasing network connectivity (Figures 2F, S5C,

and S5D). Consistently, the fraction of networks per network

size (normalized by either network size or total networks per

network size) exhibiting rare coordinated high states decreases

with increasing size (Figures S5A and S5B) as a larger fraction

of high connectivity networks exist in bigger networks

(Figure S5D).

We next wondered whether gene auto-activation (networks

with self-loops) have any effect on a networks ability to produce

the rare coordinated high states. We found that adding self-

loops on otherwise identical networks reduced the occurrence

number of simulations with rare coordinated high states (Fig-

ure 2G). We also analyzed network topologies based on charac-

teristic distance, defined as the average shortest path length be-

tween pairs of nodes of the network (see STARMethods; Box 1).

Characteristic distance recapitulates the effects of not only

network connectivity (inversely correlated with characteristic

distance) but also differentiates topologies with the same con-

nectivity (Figure 2H), for example, networks with or without

auto-activation. Using this metric across networks of all sizes,

we found that higher numbers of simulations exhibit rare coordi-

nated high states for larger characteristic distances. Together,
we demonstrate that the occurrence of rare coordinated high

states depends on network topologies.

Since the transcriptional bursting model has seven indepen-

dent parameters (ron, roff, rprod, rdeg, radd, d, and n; see Box 1

for details), we asked whether specific parameter combinations

preferentially give rise to the rare coordinated high states, and if

so, what features of such combinations facilitate it. The subse-

quent analysis is motivated by the initial observation that occur-

rence of different classes of temporal gene product profiles

across different network sizes and connectivities appear to

also depend on the parameter sets (Figure 2I). Specifically, if a

parameter set gave a specific expression profile (e.g., rare coor-

dinated high or stably high) for one network, it displayed a higher

propensity to display the same profile for other networks as well

(Figures 2I and S3D), implying that parameters indeed play ama-

jor role in the occurrence of rare coordinated high states. To

avoid biases in the parameter sets investigated, all 1,000 param-

eter sets were sampled from a broad range for each parameter

using a latin hypercube sampling algorithm (Table S1; STAR

Methods, section Parameters).

We first measured the percentage of simulations per param-

eter set that gave rise to the rare coordinated high states. Out

of the 1,000 parameter sets, eight parameter sets, from now

on called rare coordinated high parameter sets (Box 2), clustered

together at the tail end of the distribution (orange, Figure 3A),

meaning they generated simulations with frequent occurrence

of rare coordinated high states in at least 20% of all networks

tested (Figure 3A). Furthermore, these eight parameter sets

robustly generated rare coordinated high states across all

network sizes and architectures (Figure S6A). Therefore, we

wondered if these eight parameter sets have any special or
Cell Systems 10, 363–378, April 22, 2020 369
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Figure 2. Simulations of the Transcriptional Bursting Model Show Similar Behavior at the Population Level as the Drug-Naive Mela-

noma Cells

(A) Frame of a simulation showing rare coordinated high state (shaded area). The 1,000,000 time unit simulation is split into frames of 1,000 time units to create a

simulated cell population (shown for cell N). For a randomly determined time point trand, the number of simultaneously highly expressed genes and the gene count

per gene per cell are evaluated. The network of the corresponding simulation is given in the top left corner.

(B and C) The simulated number of simultaneously highly expressed genes and expression distribution at the population level are qualitatively similar to

experimental data from a drug-naivemelanoma population (data fromShaffer et al., 2017). The percentages are indicated above the histogram (in B). The network

and parameter set as well as the particular node (in C) used for comparison are shown in the right panel.

(D) The Gini indices of simulations of rare coordinated high states are substantially higher than of simulations not showing rare coordinated high states. The

experimentally measured expression distributions have Gini indices similar to simulations with rare coordinated high states.

(E) Total number of rare coordinated high states were extracted for simulations of different networks sizes, containing either 2, 3, 5, or 8 nodes to see if they occur

across networks of different sizes. Rare coordinated high states were found to exist ubiquitously across all possible networks of all analyzed network sizes. The

measurements were performed via three independent and randomly sampled trand (median, 25th and 75th percentiles).

(legend continued on next page)
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distinguishing features compared to the remaining 992 param-

eter sets.

We used a decision tree algorithm (Breiman et al., 1984) (see

STAR Methods, section Decision Tree Optimization and Gener-

alized Linear Models) to identify the differentiating features of the

rare coordinated high parameter sets from the rest. The decision

tree analysis revealed that only three (ron, roff, and radd) of the

seven independent parameters showed a strong correlation

with the rare coordinated high parameter sets (Figure 3B). We

validated these findings with complementary analysis using

generalized linear models (STAR Methods, section Decision

Tree Optimization and Generalized Linear Models) where we

found precisely these three specific parameters (ron, roff, and

radd) to be critical to produce the rare coordinated high states

with high statistical significance (p values: ron = 0.003; roff =

0.005; radd = 0.014) (Figure S6B). These observations became

readily evident when we plotted all 1,000 parameter sets for

ron, roff, and radd together and found that the rare coordinated

high parameters sets occupy a narrow region of the parameter

phase space (Figures 3C and S6C). These three parameters

are related to transcriptional bursting and inter-gene(node) regu-

lation. Two of these parameters, ron and roff, define the transition-

ing between the active and inactive state of the DNA respec-

tively. The third parameter is the gene activation rate, radd,

which corresponds to the positive regulation of transcriptional

bursting rate of a gene by the gene product of another interacting

gene. Parameter sensitivity analysis across the parameter space

also confirmed that these three parameters are indeed critical for

producing the rare coordinated high states (Figure S6D). Too

high values (> 0.31) of radd result in the disappearance of rare co-

ordinated high states, as does a complete absence (radd = 0) of

this term (Figures S6E–S6G). To confirm that these three param-

eters (ron, roff, and radd) and their corresponding range of values

are indeed critical to producing simulations with rare coordi-

nated high states, we sampled 1,000 new parameter sets from

a constrained region containing all eight rare coordinated high

parameter sets (Figure 3C, orange box; STAR Methods) and

ran simulations for two test networks, a 3-node and a 5-node

network. We found that the frequency of simulations with rare

coordinated high states for the constrained region is �14-fold

and �21-fold higher than that for the original parameter space,

respectively (Figure 3D). We note that although parameter sets

with parameters ron, roff, and radd within the identified critical
(F) The frequency of rare coordinated high states depends on the network connec

Shown here is the dependence for all 5-node networks, such that increasing c

simulations with rare coordinated high states. Each dot represents a particular n

(G) Effect of adding auto-activation (self-loop) to networks on the number of simu

simulations with rare coordinated high states less frequently than the same netwo

simulations with rare coordinated high states for networks containing auto-activ

same networks without auto-activation. Each dot represents one of the 96/2 = 46

did not give rise to simulations with rare coordinated high states were discarded

(H) The frequency of simulations with rare coordinated high states depends on th

pairs of nodes of the network. With increasing characteristic distance (normalized

represents the characteristic distance of one of the 96 networks. Each network s

(I) The frequency of occurrence of simulations with rare coordinated high states i

particular parameter set across different networks and sizes show largely the

parameter sets within the space of all parameter sets analyzed. Each column na

below the column name.

See also Figures S2–S5.
parameter ranges give rise to simulations with rare coordinated

high states much more frequently than other parameter sets, it

is not 100% of the time.

Distinct Mechanisms Regulate the Transition into and
out of Rare Coordinated High States
We have identified the networks and parameter sets for which

the transcriptional bursting model exhibits rare coordinated

high states more frequently. Next, we dissected the features of

the model that facilitate the occurrence of rare coordinated

high states. Specifically, we identified the factors that (1) trigger

the entry into the rare coordinated high states, (2) facilitate its

maintenance, and (3) trigger the escape from it. We began by

analyzing various features of transcriptional activity, since

including transcriptional bursting was found to be critical for

the model to display the rare coordinated high states. These

include the burst fraction, length of transcriptional bursts (burst

duration), and burst frequency. To measure these features, we

defined four regions for each simulation: low expression state

(baseline time-region), entry into the high expression state (entry

time-point), the high expression state (high time-region), and exit

from the high expression state (exit time-region) (Figure 4A;

STAR Methods, section Entry and Exit Mechanisms).

We found an increase in the transcriptional activity, as

measured by the burst fraction, during the high expression

time-region compared with the baseline time-region (Figure 4B),

suggesting that enhanced transcriptional activity facilitates the

maintenance of rare coordinated high states. Increased burst

fraction could be a result of (1) longer transcriptional bursts or

(2) a higher burst frequency. The former is not possible as the

duration of each burst is distributed exponentially according to

exp(roff), which does not change between the baseline and high

time-region. Indeed, we found an increase in the burst frequency

in the high time-region, thus establishing its role in the mainte-

nance of the rare coordinated high state (Figure 4C). The

increased transcriptional bursting seen in the models capable

of generating rare coordinated high states is consistent with the

experimental observations that the transcriptional activity

occurred in frequent bursts in cells high for amarker gene (Shaffer

et al., 2018). Next, we wondered whether burst frequency in-

creases with the interactions of genes within the network. We

compared two networks of the same size (3 nodes), where one

is comprised out of single unconnected (orphan) nodes and the
tivity, which is defined as number of ingoing edges for any node of the network.

onnectivity within all 5-node networks leads to a decrease in the number of

etwork topology within the possible space of 5-node networks.

lations with rare coordinated high states. Networks with auto-activation exhibit

rks without auto-activation. Fold change is calculated by dividing the number of

ation with the number of simulations with rare coordinated high states for the

direct network comparisons. Network comparisons where one of the networks

.

e characteristic distance, defined as the average shortest path length between

to network size), more simulations show rare coordinated high states. Each dot

ize is represented by a unique color.

s dependent on the choice of model parameters. Specifically, simulations of a

same class of gene expression profiles. Each row corresponds to specific

me corresponds to a particular network, and the underlying network is drawn
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Figure 3. Transcriptional Bursting Rates In-

fluence the Formation of Rare Coordinated

High States

(A) Histogram of the percentage of simulations

with rare coordinated high states per parameter

set to identify the parameter sets that favorably

give rise to simulations with rare coordinated high

states. Each of the 96 networks is simulated for

every single of the 1,000 parameter sets, where not

all 96 of these simulations give rise to rare coor-

dinated high states. The eight rare coordinated

high parameter sets, marked in orange, produce

rare coordinated high states in more than 20%

(more than 19 out of the 96 simulations) of simu-

lations and lie at the tail of the histogram. The

cutoff (dashed line) marks the 20%.

(B) Decision tree optimization was performed to

identify differentiating features of the rare coordi-

nated high parameter sets (orange in Figure 3A)

from the rest (dark gray in Figure 3A). Decision tree

analysis revealed that only three out of seven pa-

rameters, ron, roff, and radd, show a strong corre-

lation with the rare coordinated high parameter

sets. Each arm represents a decision, where the decision is marked on top, and each colored dot represents a final class.

(C) Three-dimensional representation of all tested 1,000 parameter sets for ron, roff, and radd show that the rare coordinated high parameter sets are narrowly

constrained in the 3D space (orange dots). The orange box indicates the constrained parameter space enclosing all rare coordinated high parameter sets used for

analysis in (D).

(D) Comparison between the original 1,000 parameter sets and 1,000 parameter new sets sampled from the constrained region (orange box in Figure 3C)

containing all eight rare coordinated high parameter sets. As compared to the original parameter sets, constrained region parameter sets strongly favor the

formation of rare coordinated high states for both of the networks tested (3.2 and 5.3). 3.2 and 5.3 correspond to particular networks (outlined below each bar) of

network size three and five, respectively.

See also Figures S4 and S6.
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other of an interdependent structure (network 3.2). We found that

for any parameter set (screened for all 26 parameter sets giving

simulationswith rare coordinatedhigh states in thepreviousanal-

ysis for network 3.2, Table S1), the system with a connected

network has (1) more high expression states and (2) prolonged

time in high expression states, as compared with unconnected

nodes (Figure 4D). Together, we find that the maintenance of

the high state is because of increased burst frequency.

Next, we wanted to identify the factors triggering the entry

into the rare coordinated high states. We found that for any

gene in the network, the transcriptional burst duration right

before and/or during the entry into a rare coordinated high state

was significantly higher (two-sample Kolmogorov-Smirnov test)

than that in the baseline time-region (i.e., regular bursting ki-

netics). In the example shown in Figure 4E, the average time

of transcriptional burst at the entry time-point is 84.82 (time

units) as compared with only 15.08 (time units) in the baseline

time-region. Therefore, prolonged transcriptional bursts play a

role in driving the cell to a coordinated high expression state.

Conversely, we asked if the opposite is true at the exit time-re-

gion, such that transcriptional bursts for the exit time-region are

shorter than for the high time-region. We found no statistical

difference in the distributions of burst durations between the

high and the exit time-regions, as demonstrated by the

example in Figure 4F, suggesting that the exit from high

expression state occurs independently of the burst durations.

Both of these conclusions hold true when measured for all sim-

ulations with rare coordinated high states (Figure 4G). Together,

unlike the entry into the high time-region, the exit from it is not

dependent on the transcriptional burst duration.
372 Cell Systems 10, 363–378, April 22, 2020
We also wondered if the entry into the high expression state of

one gene influences the entry of other genes, or that the genes

enter the high expression state independently of each other.

We reasoned that if the time duration between two successive

genes (tent, Figure 4A) entering the high expression state is expo-

nentially distributed, it would imply that the genes enter the high

expression state independent of each other. Instead, we found

that the distributions of entry time intervals rejected the null hy-

pothesis of the Lilliefors’ test for most of the simulations (84%),

meaning they are not exponentially distributed (Figure 4H). The

remaining 16% of cases were found to be largely falsely identi-

fied as exponentially distributed because of limited data (see a

representative example in Figure S7A). Similarly, we tested if

the exit for successive genes from the high expression state oc-

curs independent of each other. Contrary to the situation during

the entry into the high expression state, many distributions of exit

time intervals satisfied the null hypothesis of the Lilliefors’ test,

implying they are indistinguishable from exponential distribu-

tions (Figure 4I). The simulations that did not satisfy the stringent

Lilliefors’ test mainly appear to be exponentially distributed;

nevertheless, a representative example is shown in Figure S7B.

Together, the entry into and exit from the rare coordinated high

state occur through fundamentally different mechanisms—the

entry of one gene into the high expression state affects entry of

the next gene, while they exit from it largely independently

of each other. The exit from the high state could be a result of

weak strength of coupling (as reflected by the moderate values

of parameter radd) between nodes for the simulations that pro-

duce these states. Consistently, we found that too high values

of radd result in the disappearance of rare coordinated high
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Figure 4. Rare Coordinated High State is Initiated by a Long Transcriptional Burst, Maintained by an Increase in Burst Frequency and Termi-

nated According to a Random Process
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enter and exit the high region are marked by tent and texit, respectively. The bursts below the exemplary simulation are representative schematics.

(B) Burst fraction, defined as the number of time-points the system is in a burst divided by the total number of time-points, was calculated for baseline time-region

and high time-region for all (n = 594) simulations that produce rare coordinated high states and compared using violin plots. The burst fraction is significantly

higher in the high time-region than the baseline time-region (two-sample Kolmogorov-Smirnov test, p value < 0.001), implying that enhanced transcriptional

activity facilitates the maintenance of rare coordinated high states.

(C) Burst frequency, defined as the number of bursts divided by the total number of time-points, was calculated for baseline time-region and high time-region for

all (n = 594) simulations that produce rare coordinated high states and compared using violin plots. The frequency of transcriptional bursts is increased in the high

(legend continued on next page)

ll
Article

Cell Systems 10, 363–378, April 22, 2020 373



ll
Article
states, giving way to stable high states. In other words, the

network can transition into the high expression state but loses

the ability to come out of it (Figures S6E–S6G).

Increasing Network Connectivity Leads to
Transcriptionally Stable States
So far, we have used the transcriptional burstingmodel to under-

stand the potential origins of rare pre-resistant states in drug-

naive melanoma cells. Upon treatment with anti-cancer drugs,

the transient pre-resistant cells reprogram and acquire resis-

tance resulting in their uncontrolled proliferation. The resistant

cells are characterized by the stabilization of the high expression

of themarker genes,whichwere transiently high in thedrug-naive

pre-resistant cells (Figure 5A) (Shaffer et al., 2017). Studies using

network inference of gene expression data have suggested that

the genetic networks undergo considerable rearrangements

upon cellular transitions or reprogramming (Moignard et al.,

2015; Schlauch et al., 2017). We wondered if the transcriptional

bursting model can explain how the transient high expression in

drug-naive cells might become permanent upon treatment with

anti-cancer drugs. The modeling framework produces a range

of gene expressionprofiles, depending on the network properties

and model parameters (Figures 1D–1G). Increasing the network

connectivity (for fixed parameter sets) is one way to shift from a

rare transient coordinated high expression state to stably high

expression state (Figures 5B–5E). As an example, for a fixed

network size (five) and associated parameters, increasing the

network connectivity from one to five resulted in a shift from tran-

sient coordinated to stably high expression states (Figures 5D

and 5E, respectively). The shift from transient coordinated to sta-

bly high expression states is also reflected by the bimodal distri-

bution of genes product counts for in the highly connected

network (Figures 5F and 5G), where genes stay permanently in

the high state once they leave the low expression state. These

results mimic the experimentally measured mRNA expression

states of the drug-induced reprogrammed melanoma cells.

To test if the computational prediction holds true inmelanoma,

we performed network inference using the 4-mixing coefficient-

based (Ibragimov, 1962) Phixer algorithm (Singh et al., 2018) on

the experimental data (Box 2; STAR Methods, section Compar-
time-region (two-sample Kolmogorov-Smirnov test, p value < 0.001), implying that

prolonged bursts.

(D) Violin plots of the fold change in number of high states and total time spent

interactions between the connected nodes (network) leads to an increased num

change is calculated by dividing the number of high states (total time spent in high

states) for the unconnected graph. Each dot represents one of the 26 simulation

(E) Distributions of burst duration in the baseline time-region (black) and those co

entry time-points are significantly longer than bursts in the baseline time-region

(F) Distributions of burst duration in the high time-region but not the exit time-regio

(see Figure 4A). There is no statistically significant difference between the distribu

region (two-sample Kolmogorov-Smirnov test, p value > 0.05).

(G) Violin plots of the mean burst duration ratios for entry and exit (n entry = nexit =

duration distributions (see E and F) per simulation for all simulations with rare coo

regions. While the mean (and median) burst duration ratio between entry time-po

burst duration ratio between bursts in the exit time-region and in the rest of the h

states.

(H and I) Distributions of the time intervals between genes entering (H) and exiting

distributed differently for two representative simulations. While the time intervals

hence not random), the time intervals for exiting (texit) the high time-region are exp

See also Figure S7.
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ative Network Inference; Table S2). Specifically, we used the

Phixer algorithm on the mRNA counts obtained from FISH imag-

ing data ofmarker genes in drug-naive cells and the resistant col-

onies that emerge post-drug treatment to infer the underlying

network. Consistent with the model prediction, we found that

the number of edge connections (for a range of edge weight

thresholds) between marker genes increased substantially for

6 out of 7 resistant colonies compared with the drug-naive cells

(Figure 5H). To control for biases from subsampling of the exper-

imental data and nature of the Phixer algorithm itself (see STAR

Methods, section Comparative Network Inference), we ran the

entire network inference analysis 1,000 times. Again, in all

1,000 runs, we saw a higher number of total edges for 6 out of

7 resistant colonies than the drug-naive cells (Figures 5I, S8A,

and S8C).

Besides the dependence on networks, our framework predicts

that for a given network, stronger interactions between nodes

(defined by the interaction parameter radd) can also result in sta-

ble gene expression profiles (Figures S6E–S6G). It is possible

that reprogramming results from a combination of increased

edge connectivity as well as the enhanced interactions (given

by parameter radd) between existing edges. Biologically, it would

translate into stronger and increased number of interactions be-

tween genes and associated transcription factors during reprog-

ramming. Together, network inference of the experimental data

is consistent with model findings about the cellular progression

from a transient coordinated high expression state to a stably

high expression state.

DISCUSSION

We developed a computational framework to model rare cell be-

haviors in the context of a drug-naive melanoma population

where a rare subpopulation of cells displays transient and coor-

dinated high gene expression states. We found that a relatively

parsimonious stochastic model consisting of transcriptional

bursting and stochastic interactions between genes in a network

is capable of producing rare coordinated high states that mimic

the experimental observations. To systematically investigate

their origins, we screened networks of increasing sizes and
enhanced transcriptional activity is caused bymore frequent bursts rather than

in high states for network 3.2 and its unconnected graph. Positive regulatory

ber of and total time in high states in comparison to independent nodes. Fold

states) for network 3.2 with the number of high states (total time spent in high

s showing rare coordinated high states for network 3.2.

incident with entry time-point (gray) (see Figure 4A). The bursts coincident with

(two-sample Kolmogorov-Smirnov test, p value < 0.001).

n ([high-exit] time-region) (light gray) and those in the exit time-region (dark gray)

tions underlying the duration of bursts in the high time-region and the exit time-

594), where mean burst ratio represents the difference in means of the burst

rdinated high states. Ratio close to 1 suggests no difference between the two

int and baseline time-region is considerably increased, the mean (and median)

igh time-region are comparable for all simulations with rare coordinated high

(I) the high time-region, denoted by tent and texit respectively in Figure 4A, are

for entering (tent) the high time-region are not exponentially distributed (H) (and

onentially distributed (I) (Lilliefors test, p value < 0.001 and > 0.05, respectively).
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Figure 5. Increased Connectivity of a Network Leads to Stable High

Expression Which Is Also Observed in Emerging Resistant Colonies

Post-drug Treatment

(A) Upon drug treatment, the surviving cells acquire stable resistance. A

schematic gene expression pattern is shown below.

(B–E) (B and C) Networks of size 5 with low (B) (1) and high (C) (5) connectivity

and corresponding (D and E) simulations.

(F and G) The expression distributions are determined by taking the counts of

simulated gene products per 1,000 time units (see Figure 2A) of simulations (D

and E) corresponding to the lowly (B) and highly (C) connected networks. The

gene expression distribution of the highly connected network (G) does not

exhibit heavy tails while the simulation of the lowly connected network (F)

exhibits heavy tails.

(H) Comparison of the connectedness of the underlying inferred gene regu-

latory networks of drug-naive cells and resistant colonies (post-drug treat-

ment) using the Phixer algorithm for network inference analysis. Total number

of edges is calculated for different edge weight thresholds, defined as the

threshold at which an inferred edge is assumed to be present in the inferred

gene regulatory network. For all the edge weights investigated, 6/7 resistant

colonies have inferred gene regulatory networks with higher numbers of edges

than drug-naive cells, suggesting that the gene regulatory networks underlying

resistant colonies are more strongly connected.

(I) Applying the network inference analysis 1,000 times for a fixed edge weight

threshold of 0.45 gives distributions for the number of edges in the inferred

gene regulatory networks for both drug-naive cells (red) and resistant colonies

(black) (distributions shown for one example each). The distribution of number

of edges in the inferred gene regulatory network is considerably increased for

the resistant colony.

See also Figure S8.
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connectivities for a broad range of parameter values. Our study

revealed that they occur more frequently for networks with low

connectivity and depend on 3 of the 7 independent model pa-

rameters. Furthermore, we showed that the mechanisms that

lead to the transition into and out of the rare coordinated high

state are fundamentally different from each other. Collectively,

our framework provides an excellent basis for further mecha-

nistic and quantitative studies of the origins of rare, transient,

and coordinated high expression states.

Given the relative generality of the networks that produce rare

coordinated high states, the transcriptional bursting model pre-

dicts that every cell type is capable of entering the rare coordi-

nated high state. Furthermore, we show that canonical modes

of transcription alone, namely the binding of the transcription

factor at gene locus to produce mRNA via recruitment of RNA

polymerase II, can lead to these states without requiring other

complex mechanisms, such as DNA methylation, histone modi-

fications, or phase separation. Although such other mechanisms

may still be operational in these cells to regulate their entry to or

exit from these states, we posit that in principle, any set of genes

interacting via traditional gene regulatory mechanisms are

capable of exhibiting these rare coordinated high states, as

long as they are interacting in a certain manner (e.g., sparsely

connected) with appropriate kinetic parameters. In the case of

drug-naive melanoma cells, the transient state is characterized

by an increased ability to survive drug therapy leading to uncon-

trolled proliferation of the resulting resistant cells. It is possible

that these rare transient behaviors may exist across many sets

of interacting genes that may or may not manifest into pheno-

typic consequences. Another possibility the transcriptional

bursting model predicts is that even within the same cell, distinct

modules of interacting genes can lead to distinct sets of rare
Cell Systems 10, 363–378, April 22, 2020 375
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coordinated high states that each can affect the cellular function

and outcomes differently. These possibilities can be tested for by

using increasingly accessible single cell RNA sequencing tech-

niques on clonal populations of cells.

One limitation of the transcriptional bursting model is that we

have performed quantitative analysis only on symmetric net-

works with positive interactions between nodes. Although the

preliminary analysis on two cases of randomly selected asym-

metric networks shows that they do exhibit the rare coordinated

high states (Figures S2G–S4M), it remains to be seen whether

these findings hold more generally for asymmetric networks.

Inhibitory interactions between nodes are a separate and

perhaps more interesting point. In principle, the model can be

adapted to include inhibitory interactions. These inhibitory inter-

actions may lead to non-monotonic effects of network connec-

tivity on the occurrence of rare states, as positive and negative

interactions can compete in non-linear ways. Similarly, a network

with both negative and positive interactions may be more prone

to instability, even for relatively smaller networks. Furthermore,

inclusion of these interactions might also make the exit of genes

from the high expression state dependent on one another, which

occurs independently in the current transcriptional bursting

model. We also highlight that unlike the experimental data, the

model simulations do not have non-zero values for a larger num-

ber of genes in the high expression states (Figure 2B). The

absence of non-zero values may be because the network under-

lying the experimental data contains a much larger set of inter-

acting genes, thereby increasing the likelihood of non-zero

values for a higher number of expressed genes. Larger gene net-

works can be explored in the future studies.

While we have focused on rare, transient, and coordinated

high expression states inmelanoma, our study provides concep-

tual insights into other biological contexts, such as stem cell re-

programming. Particularly, there is increasing evidence to sug-

gest that stem cell reprogramming to desired cellular states

proceeds via non-genetic mechanisms in a very rare subset of

cells (Hanna et al., 2009; Pour et al., 2015; Takahashi and Yama-

naka, 2016). The transcriptional bursting model may explain the

origins and transient nature of this type of rare cell variability. In

sum, we have established the plausibility that a relatively parsi-

monious model comprising of transcriptional bursting and sto-

chastic interactions of genes organized within a network can

give rise to a new class of biological heterogeneities. Therefore,

we believe that established principles of transcription and gene

expression dynamics may be sufficient to explain the extreme

heterogeneities that are being reported increasingly in a variety

of biological contexts.

Key Changes Prompted by Reviewer Comments
In response to the reviewers’ comments, we made the introduc-

tory paragraph concise, added Box 1, which provides detailed

description and associated assumptions of the model, and

added Box 2, which provides definitions ofmetrics used to quan-

tify the rare coordinated high states. We also relaxed the model

assumptions (Figures S4A–S4E; STAR Methods) to explore the

effect of (1) including translation and (2) using a multiplicative

mode of gene interaction. Additionally, we performed extensive

mechanistic analysis of the model features that initiate the tran-

sition into rare coordinated high states and those that enable
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maintenance of these states. Findings from this analysis are pre-

sented in Figure 4 and Results section. Furthermore, we

analyzed additional network topologies (Figures 2 and S5),

tested the model on a bigger network size (10 nodes) (Fig-

ure S2D), and performed sensitivity analysis on the parameter

space (Figure S6D). We also performed comparative analysis

between experimental data for multiple genes and computa-

tional data using two metrics (1) Gini coefficient measuring en-

tropy (Figure 2D) and (2) fitting exponentials to analyze for sub-

exponentiality (Figure S3C). For context, the complete trans-

parent peer review record is included within the Supplemental

Information.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

RNA-FISH data – marker genes Shaffer et al., 2017 https://www.dropbox.com/sh/

g9c84n2torx7nuk/

AABZei_vVpcfTUNL7buAp8z-a?dl=0

RNA-FISH data – network inference

(resistant colonies)

Shaffer et al., 2017 https://www.dropbox.com/sh/

g9c84n2torx7nuk/

AABZei_vVpcfTUNL7buAp8z-a?dl=0

Data – Model simulations This paper https://www.dropbox.com/sh/

n94q45zkn5w54fe/

AACC3cgts4kD6MWEE452pEgEa?dl=0

Software and Algorithms

MATLAB R2017a and R2018a Mathworks https://www.mathworks.com

Phixer Singh et al., 2018 https://github.com/nitinksingh/phixer/

Code – Model simulations This paper https://doi.org/10.5281/zenodo.3713697
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Yogesh

Goyal (yogesh.goyal0308@gmail.com). This study did not generate any new materials.

METHOD DETAILS

Networks
In our framework, the nodes in the network represent genes, where the expression of a gene is regulated by the expression of other

genes. Gene regulation is represented by directed edges in the network, e.g. if the expression of gene Y is regulated by the expres-

sion of gene X, then the network contains an edge from node X to node Y. These networks can be defined by adjacency matrices

given by:

Aij =

�
1; if there is an edge from node i to j
0; else:

Any node in a network of size N can be connectedwith up toN-1 other nodes and in the case of self-loops, to N other nodes. Hence,

the adjacencymatrix A is of size N*N. This means that there are 2NxN possible adjacencymatrices for a network of size N - each of the

possible N*Nmatrix entries can take on one of the values of 0 (no edge) and 1 (edge). For example a network of size 3 has 2(3*3) = 512

possible networks.

Here, we focus on symmetric networks, where we assume a relational identity between all nodes in a network. Experimental data

from Shaffer et al. (Shaffer et al., 2017) implies the absence of any obvious hierarchical structure within the genes, and that the driver

genes may interact in a relatively non-hierarchical manner (Figure S1D). The structural embedding of a node in its network can in-

crease or decrease its ability of being involved in coordinated overexpression. For example, a centered node within a star-shaped

network is involvedmore frequently in coordinated overexpression than the other nodes within the same network (Figure S1E), which

is inconsistent with the experimental observations. To ensure for non-hierarchical behavior we define a set of symmetric networks

(Figure S1F), where the number of in- and outgoing edgeswithin a node and across nodes is identical and either all nodes in a network

have a self-loop or not, leading to adjacency matrices of which the rows are cyclic permutations (to the right) with offset one of each

other. We first compute all possible vectors {0,1}N, in total 2N vectors. From each of these resulting vectors, we create an NxNmatrix

by using the given (row) vector as template, and creating the other N-1 rows by cycling the prior row vector to the right by one step,

where the right-most entry in the row vector is added to the (so far empty) left-most entry. By applying this permutation N-1 times, all

possible cyclic permutations are captured within a matrix, and each node in the given network is completely relational identical. We

make use of the circshift function in MATLAB to receive the possible cyclic permutations of the initial row vectors.

We further constrain the analysis to weakly-connected networks – any node in a network has to be connected to at least one other

node, without taking into account the directionality of the edges. In terms of the adjacency matrix:
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ci˛f1; :::;Ng :
X

j˛f1;:::;Ng; jsi

Aij +AjiR1:

The above restriction allows us to exclude the consideration of compositions of smaller and unconnected networks, which could

otherwise lead to double counting. These subnetworks of smaller sizes are analyzed in the sets of networks of respective node sizes.

To perform this operation, we analyze all the previously constructed adjacency matrices using the MATLAB function conncomp(X,’-

Type’,’weak’), which assigns each nodewith a bin number according to the connected component of its underlying undirected graph.

If all nodes of a network belong to the same bin number i.e. to the same connected component, the adjacency matrix encodes for a

weakly-connected graph. Finally, we further restrict the analysis to non-isomorphic networks. Two networks are called isomorphic if

there exists a bijection from the edge space of one network to the other, such that any edge of one network is projected to a particular

edge in the other network. Here, the labeling of the nodes (gene 1, gene 2,...) in the networks is arbitrary and hence relabeling of nodes

in an adequate fashion leads to identical networks. To ensure that all the final networks analyzed are of a non-isomorphic set of net-

works, we test all networks withMATLAB’s function isisomorphic. We initiate the final set of networks with one adjacencymatrix, and

then sequentially test all other networks for isomorphism. If the given network is non-isomorphic to the current final set, it is added to

the final set. Conversely, if the network is isomorphic to one of the networks in the final set, it is discarded.

By reducing the possible set to weakly-connected, non-isomorphic and symmetric networks, we greatly reduce the possible num-

ber of networks. For example, in the previous example, we had 512 possible networks for 3 nodes. By applying all the mentioned

constraints (weakly-connected, non-isomorphic and symmetric), 4 networks remain (Figure S1C). We perform the analysis on net-

works of sizes 2, 3, 5 and 8 each consisting of 2, 4,10 and 80 networks, respectively, adding up to a total of 96 networks (Figure S9). In

principle, the transcriptional bursting model can easily be extended to larger network sizes without the loss of generality (Figures

S2D–S2F).

Models
Model 2 - Transcriptional Bursting Model

The transcriptional bursting model is an expansion of the telegraph model, where DNA can take on one of the two states, active and

inactive, e.g. based on the presence or absence of transcription factors (Figure 1C). The active and inactive state directly translates

into high and low rates of production of gene products, respectively. We add interaction terms to the model, where the expression of

a gene influences the rate of DNA activation of another gene depending on how they are organized in a respective network. Here we

use the number of mRNA as a faithful proxy for the number of proteins. In other words, we only model the number of mRNA counts

and assume that any mRNA is immediately translated into one single functional protein after its translation. Therefore, the mRNA

count determines the strength of the regulation. Here, we model the regulation of one gene by another using the Hill function, given

by:

fðmRNAXÞ = mRNAn
X

kn +mRNAn
X

;

where mRNAX is the mRNA count of gene X, n is the Hill coefficient and k is the dissociation constant, n,k > 0. The Hill coefficient

determines the steepness of the Hill function, i.e., the extremeness of its switch-like effect. The dissociation constant determines

the half-maximal value, fðmRNAXÞ = 0:5.

The reversible transitions between the inactive and active states, as well as the mRNA synthesis and degradation, are modeled by

chemical reactions. For each gene, we have three chemical species - the DNA inactive state, the DNA active state and mRNA. These

three species interact with one another according to the following 5 chemical reactions:

I/A
A/I
I/ I+mRNA

A/A +mRNA
mRNA/B;

defining the corresponding stoichiometric matrix: 0
@�1 1 0 0 0

1 �1 0 0 0
0 0 1 1 �1

1
A:

The stoichiometric matrix encodes the net change in each chemical species resulting from any of the chemical reactions where the

chemical reactions are assumed to occur stochastically. Under the assumptions of the law of mass action, the probability of a spe-

cific molecular collision to occur in the infinitesimal time interval [t, t + dt) is proportional to the product of the molecule counts of the
e2 Cell Systems 10, 363–378.e1–e12, April 22, 2020
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educt chemical species. The reaction propensity aj(x) for a given chemical reaction Rj and state x, determines the probability density

function such that aj(x)dt gives the probability of the chemical reaction Rj taking place in dt, for small dt. Examples of reaction pro-

pensities for so called elementary reactions are given here:
Reaction Reaction propensity

B/products k

Xi/products kxi

Xi + Xj/products kxixj
where k is called the reaction rate.

The gene regulation influences the reaction rate of the DNA activating chemical reaction.

To explain the above-mentioned chemical reactions, we introduce eight rates/parameters:
Parameter Description

ron The rate at which DNA is activated.

roff The rate at which DNA is inactivated.

rprod Synthesis rate of mRNA.

rdeg Degradation rate of mRNA.

radd Parameter determining the contribution of the additional DNA activation rate

upon gene regulation.

d Factor by which themRNA synthesis rate is increased when in an active DNA

state (in comparison to basal synthesis rate in DNA inactive state), >1.

k Dissociation constant of the Hill function.

n Hill coefficient.
The full model description for one gene regulated by a single gene X is given below:
Chemical reaction Reaction rate Reaction propensity

I/A
ron + radd$

mRNAn
X

kn +mRNAn
X

�
ron + radd $

mRNAn
X

kn +mRNAn
X

�
$I

A/I roff roff$A

I/I + mRNA rprod rprod$I

A/A + mRNA d$rprod d$rprod$A

mRNA/B rdeg rdeg$mRNA
where I;A˛f0; 1g; and I + A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state and I = 1 (A = 0) denotes that the

DNA is in an inactive state. mRNAX is the mRNA count of gene X at the given time, ron is the basal DNA activation rate, radd is the

additional activation rate due to gene regulation, roff is the DNA inactivation rate, rprod is the basal mRNA synthesis rate in the DNA

inactive state, d denotes the increase in the mRNA synthesis rate when the DNA is in the active state, where d > 1, and rdeg is the

mRNA degradation rate. The chemical reactions are identical for all N nodes in a given network of size N. The reaction rate of acti-

vation (I / A), composed of terms with parameters ron and radd, is the only node-specific rate. It depends on the underlying

network and has to be adapted accordingly for each node, where the in-going edges of a node determine which gene regulations

are active. The addition of hill function-based activation terms corresponds to the adaptation of the standard telegraph model. We

model gene regulation additively: if there is more than one influencing gene, we add the Hill function terms of the respective genes.

As an example, if the gene of interest is influenced not only by gene X, but by gene X and gene Y, the activation rate from above will

expand to:

ron + radd$

�
mRNAX

n

kn +mRNAX
n +

mRNAY
n

kn +mRNAY
n

�
:

We also tested for multiplicative regulation, i.e. regulation where wemultiply the reaction rates (and consequently the reaction pro-

pensities) of the influencing genes (Figure S4C). In the example above the activation rate then expands to

ron + radd$2$

�
mRNAn

X

kn +mRNAn
X

$
mRNAn

Y

kn +mRNAn
Y

�
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instead. By definition the Hill function is restricted to values between 0 and 1. While a multiplication of two Hill functions results in a

maximal value of 1, an addition results in amaximal value of 2. As the Hill function is an important factor in these simulations we hence

add a scaling factor to the activation rate in case of multiplicative regulation. We show that for network 5.3, 97 out of 1000 simulations

show rare coordinated high states in case ofmultiplicative regulation (Figures S2D and S2E). In comparison, 15 simulations show rare

coordinated high states in case of additive regulation. 9 simulations show rare coordinated high states in both cases.

Additionally, we tested for translation events (Figure S4A).We added one state (P) and two rate parameters, a protein synthesis rate

rprodP and a protein degradation rate rdegP, to the original transcriptional bursting model. The extendedmodel description accounting

for translation for one gene regulated by gene X is given below:
Chemical reaction Reaction rate Reaction propensity

I/A
ron + radd$

mRNAn
X

kn +mRNAn
X

�
ron + radd $

mRNAn
X

kn +mRNAn
X

�
$I

A/I roff roff$A

I/I + mRNA rprod rprod$I

A/A + mRNA d$rprod d$rprod$A

mRNA/B rdeg rdeg$mRNA

mRNA/mRNA + P rprodP rprodP$mRNA

P/B rdegP rdeg$P
where we define k again as 0.95 of the high steady state, this time for the protein count:

k
�
rprodP; rdegP;d; rprod; rdeg

�
= 0:95$

rprodP
rdegP

$d$
rprod
rdeg

;

which itself is dependent on the high steady state of the mRNA (d * rprod/rdeg). Redefining rprodP = a * rprod and rdegP = b * rdeg gives

k
�
rprod; rdeg;d

�
= 0:95$d$

a

b
$r2prod$r

2
deg:

We tested three different translation scenarios: protein synthesis and degradation being (1) faster than (2) same as and (3) slower

than mRNA synthesis and degradation. For network 5.3 and parameter set 968, giving rise to rare coordinated high states in the tran-

scriptional bursting model without translation, we took a = b = 10 (faster), a = b = 1 (same) and a = b = 0.1 (slower) as additional pa-

rameters. We find that protein synthesis and degradation with faster (Figure S4B) and same rates as mRNA degradation and synthe-

sis, also allows for the formation of rare coordinated high states in the case of translation. Only slower protein synthesis and

degradation rates did not show rare coordinated high states, likely because for faster protein rates, the system dynamics is deter-

mined largely by the transcriptional dynamics. In sum, we demonstrate that the rare coordinated high states can arise in the revised

model that includes translation.

Model 1- Constitutive Model

Model 1 is a simple gene regulatory expression model, where mRNA can either be transcribed or degraded and the mRNA of a reg-

ulatory gene influences the transcription rate of a regulated gene (Figure 1B). Here again, we assume the number of mRNA to be a

faithful proxy for the protein number and hence, only model the mRNA expression of a gene. The gene regulation is modeled accord-

ing to the Hill function (STAR Methods; Model 2 - Transcriptional Bursting Model).

The synthesis and degradation are modeled by chemical reactions. For each gene, we have one chemical species, its mRNA,

described by the following two chemical reactions:

B/mRNA
mRNA/B;

defining the corresponding stoichiometric matrix:

ð1�1Þ:
e4 Cell Systems 10, 363–378.e1–e12, April 22, 2020
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The full model description for one gene regulated by a single gene X is given below:
Chemical reaction Reaction rate Reaction propensity

B/mRNA
rprod + radd$

mRNAn
X

kn +mRNAn
X

rprod + radd$
mRNAn

X

kn +mRNAn
X

mRNA/B rdeg rdeg$mRNA
where rprod the basal mRNA synthesis rate, rdeg the mRNA degradation rate, radd the additional synthesis rate due to gene regu-

lation and mRNAX the mRNA count of gene X at the given time.

The chemical reactions are identical for all N nodes in a given network of size N. The synthesis rate is a node-specific rate (STAR

Methods; Model 2 - Transcriptional Bursting Model). We model gene regulation additively (STARMethods; Model 2 - Transcriptional

Bursting Model). For k we tested two different definitions: one closer and one further away from the low expression taking into ac-

count the intrinsic stochasticity. We therefore first run a test simulation with a random k for 1,000 time units and determine the stan-

dard deviation of the expression of the node denoted as ‘node 1’. k is latin hypercube sampled with the rest of the parameters with

lower and upper boundary 100 and 1000. We set k to be:

k =
rprod
rdeg

+ x$std;

where std is the standard deviation of the expression of the node denoted as ‘node 1’ and x˛ {3,5}. We then re-initiate the simulation

with the adapted k value.

Model Selection
We decided to develop a network-based framework that models the cell-intrinsic biochemical interactions. One of the first goals we

hadwas to identify theminimal set of biochemical reactions that constitutes this networkmodel. We askedwhether a simple network

model lacking gene activation step (Model 1), i.e. with constitutive mode of gene expression, is sufficient to capture rare coordinated

high states (Figure 1B; STAR Methods; section Model 1)? Or that we need to incorporate gene activation step via transcriptional

bursting (Model 2) at each node, a phenomenon in which genes flip reversibly between transcriptionally active and inactive state

regulated by the binding of a transcription factor(s) (Figure 1C; STAR Methods; section Model 2)?

In terms of chemical reactions, the critical difference between the two models is that, while in Model 1 the gene is transcribed as a

Poisson process with a single rate, rprod (Figure 1B), in Model 2, a gene can reversibly switch between active (ron) and inactive state

(roff), where binding of the transcription factor at a gene locus defines the effective rate of gene production (Figure 1C). Specifically,

when inactive, the gene is transcribed as a Poisson process at a basal rate (rprod); when active, this rate becomes higher (d x rprod,

where d > 1). For both the models, we modeled degradation of the gene product as a Poisson process with degradation rate rdeg. For

both the models, the inter-node interaction parameter, radd, has a Hill-function-based dependency on the gene product amount (Hill

coefficient n) of the respective regulating node to account for the multistep nature of the interaction (Figures 1B and 1C). All chemical

reactions, propensities, and model parameters are presented in STAR Methods. To test these two models, we used Gillespie’s next

reaction method (Gillespie, 1977) and simulated test cases of small networks (of two or three nodes) for a range of parameters.

For a vast majority of the networks and parameter combinations, Model 1 either produced always low or always high expression

states (Figure S1A). In some cases, while Model 1 could indeed produce a transition from low to high expression states, the transition

happens for all gene products at the same time (Figure S1A). However, this model is not consistent with the experimental observa-

tions; in particular, if a cell is positive for one marker gene, then it is more likely to be positive for another marker gene, but not neces-

sarily so (Figure S1B) (Shaffer et al., 2017). Furthermore, this mode of transition resulted in bimodal distributions of cellular state as

determined by the amount of gene product (Figure S1B), which is different from the rare nature of the transitions, as reflected by the

heavy-tailed distributions of gene products observed in melanoma. Model 2, which incorporates transcriptional bursting-dependent

activation of a node (gene), also produced a range of gene expression states (Figures 1C–1F). Importantly, this model was able to

faithfully capture the qualitative features of the experimental data i.e. rare, transient, and coordinated high expression states (Fig-

ure 1F). In contrast to Model 1, Model 2 captures another property of the experimental data, i.e. if one gene is in the high expression

state, the other genes in the network are likely to be in high expression state, but not always (Figures 2B and S2B). Based on these

initial observations, we decided to pursue Model 2 systematically and simulated networks of different sizes and architectures across

a broad range of model parameters.

Parameters
The goal of our study is to model the emergence of rare transient coordinated high expression of several genes. The theoretical idea

behind the transcriptional bursting model is that each time the DNA is in an active state, corresponding to a transcriptional burst, the

steady-state of the mRNA count is shifted from rprod/rdeg to d*rprod/rdeg. Accordingly, the mRNA attempts to reach its new steady-

state which results in a rapid increase in their counts. Depending on the length of the transcriptional burst, which is exponentially

distributed with rate parameter roff, the mRNA count is able to reach the new steady-state. We use the dynamical system behavior
Cell Systems 10, 363–378.e1–e12, April 22, 2020 e5
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when modeling the rare coordinated overexpression. In principle, for most transcriptional bursts, the sudden mRNA increase should

not initiate a DNA activation of its regulated genes; only in some rare cases, the transcriptional burst in one gene is long enough such

that its mRNA count exceeds a certain threshold that may be able to affect the state of another gene locus on DNA. Exceeding of the

mRNA threshold can lead to an increased probability of the DNA states of its regulated genes to be activated and hence to an

increasedmRNA synthesis in the respective genes. The increasedmRNA synthesis of regulated genesmay lead to positive feedback

loops network-wide resulting in the transient coordinated overexpression of genes.

The threshold to be overcome by the mRNA count of a gene to make its gene regulation effective is given by the dissociation con-

stant of the Hill function, k. k determines the ‘switching point’ from (almost) no gene regulation to (almost) complete gene regulation.

Therefore, we define k to be a function of rprod, rdeg and d as follows:

k
�
rprod; rdeg;d

�
= 0:95$d$

rprod
rdeg

;

where d*rprod/rdeg gives the steady-state mRNA count of the respective regulating gene in the DNA active state. Here, we arbitrarily

determine the threshold k to 0.95 of its high-expression steady-state to restrict the emergence of coordinated overexpression to be-

ing rare and for the system to demonstrate a considerable difference between the low and high gene expression state. The simula-

tions and the analysis are all performed according to the above definition of k. We tested the robustness of this definition for a partic-

ular network 5.3 (Figure S9) wherewe performed the same simulations (for 100 latin hypercube sampled parameter sets (Table S1)) as

for the final analysis as before using five different definitions of k:

k
�
rprod; rdeg;d

�
= x$d$

rprod
rdeg

;

where x ˛ {0.75, 0.8, 0.85, 0.9, 1} (Table S1). Our analysis shows that for x = 0.75, none of the 100 simulations show rare coordinated

high states: the threshold leading to an effective gene regulation is exceeded too often: the regulated DNA states are activated, the

high state emerges and we lose the rareness of the coordinated high gene expression event. The number of simulations showing rare

coordinated high states increases with increasing x, reaching its maximum for x = 0.95 (standard, 7 out of the 100 simulations show

rare behavior). For x = 1 (high expression steady-state), we also see rare behavior in 7 out of 100 simulations, showing overlapping

results in 6 out of the 7 simulations.

Together, we are left with a set of seven parameters consisting of: ron, radd, n, roff, rprod, d, rdeg, which may be split into inter-gene

(ron, roff, rprod, d, rdeg) and intra-gene (radd, n) parameters and the dependent parameter k. Potentially, these parameter sets are node-

dependent resulting in a N * 7-dimensional parameter space for a network of size N.

To emphasize the equality between the nodes, we use the same 7-dimensional parameter set for all nodes in a network. Hence, the

nodes are relationally and parametrically identical, thereby also allowing us to directly compare the simulations of different network

sizes, otherwise not possible, and to determine the effects of network size and architecture on the ability of forming the rare coor-

dinated high state. Therefore, we latin-hypercube sample 1000 parameter sets out of the parameter space with upper and lower

boundaries (chosen arbitrarily, but typically spanning two orders of magnitude):
Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.1

roff 0.01 0.1

d 2 100

radd 0.1 1

n 0.1 10
by using the MATLAB function lhsdesign_modified (Khaled, N. Latin Hypercube (https://de.mathworks.com/matlabcentral/

fileexchange/45793-latin-hypercube), MATLAB Central File Exchange. Retrieved May 5, 2018.). The 1000 parameter sets are shown

in the Table S1. For some plots, we used a y-axis break function in MATLAB (Mike, C.F. Break Y Axis (https://www.mathworks.com/

matlabcentral/fileexchange/45760-break-y-axis), MATLAB Central File Exchange. Retrieved December 21, 2018.)

Simulations
We simulatedmodel 2 for a total of 96 networks (for all weakly-connected, non-isomorphic, symmetric networks of sizes 2, 3, 5 and 8

with 2, 4, 10 and 80 networks, respectively)(Figure S9), each for 1,000 sampled parameter sets, resulting in a total of 96,000 simu-

lations across four different network sizes. The simulations were performed according to Gillespie’s next reaction method and were

computed for 1,000,000 time units, which is critical for capturing rare behaviors. For all simulations, the DNA state was initiated (t = 0)

to be in its inactive state and themRNA count was arbitrarily set to 20 for all nodes. ThemRNA counts quickly reach their low-expres-

sion steady state, such that we are certain that our analysis is not impaired by the given initial conditions. The simulations were
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implemented in MATLAB R2017a and R2018a. One single simulation of 1,000,000 time units took between 20 minutes and 9 hours

depending on the parameter set and the network. The complete simulations took over 1.5 months to run, where we parallelised all 96

networks and let each of them run on four cores simultaneously.

Simulation Classes
We analyzed all of the 96,000 simulations, and assign them to the following four classes, initially by visual inspection, and subse-

quently by defined criteria (see below):

I - stably low gene expression

II - stably high gene expression

III - uncoordinated transient high gene expression

IV- rare, transient coordinated high gene expression

Therefore we constructed three criteria, for which all the simulations were tested. We primarily focus on the rare, transient coor-

dinated high gene expression states, as defined by the following criteria:

1) Coordinated high gene expression state. We call a simulation to show coordinated high expression, if at least once within the

1,000,000 time unit simulation more than half of the mRNA counts are above a specified threshold (e.g. for 5 nodes, at least

once three or more mRNA counts have to be above a defined threshold; for 8 nodes, at least once 5 or more mRNA counts

have to be above a defined threshold). Similar to the definition of the dissociation constant k, we set the threshold to
thres = 0:8$d$
rprod
rdeg

;

where d * rprod/rdeg gives the high-expression steady state. Again, we want to detect the rare occurrence of a large mRNA count de-

viation from the low-steady state and hence, set the threshold arbitrarily to 0.8 (see below for details on the choice of this value).

To compare the simulated results with the experimental data from a drug-naive melanoma cell population, we split the 1,000,000

time unit simulations into 1,000 time unit sub-simulations, each accounting for a cell. Hence, we receive simulations of 1,000 cells for

1,000 time units, a procedure justified by the ergodic theory. To show that sub-simulations of 1,000 time units are uncorrelated, we

determine the autocorrelations for all 1,000 parameter sets of network 3.2 (Figure S9) for up to 1,000 lags (using the MATLAB

autocorrelation function acf (Autocorrelation function(ACF) (https://www.mathworks.com/matlabcentral/fileexchange/30540-

autocorrelation-function-acf), MATLAB Central File Exchange. Retrieved June 13, 2019.). For each of these, we determine the first

lag at which the autocorrelation is below the upper 95% confidence bound. For 88.2% of all simulations, the first lag below the upper

95% confidence bound occurs before 1,000 lags. For the 26 simulations with rare coordinated high states, 23 show a first lag below

the upper 95% confidence bound before 1,000 lags. For the remaining three simulations the autocorrelation after 1,000 lags is at

0.0615, 0.0206 and 0.4363. Removing the simulation with high autocorrelation (0.4363) does not change the conclusions of our

analysis.

2) Rareness/transience. To mimic the results given by RNA-FISH in a drug naive melanoma population, where we only see a

snapshot of the mRNA counts within a melanoma cell, we randomly determine a time-point trand, where trand ˛ [0,999] (uni-

formly distributed), at which we count the number of mRNA counts above the threshold (for each simulation t varies). We sum-

marize the result of all 1,000 cells in a histogram, for which we expect a decrease with increasing mRNA count above the

threshold.

3) Heavy-tailed gene expression distributions. At the population level, the single mRNA distributions of marker genes show

heavy-tails. We use the same time-point t as sampled for criterion 2) and consider the mRNA counts of all genes. If we plot

these in gene-dependent histograms, we expect to find right-skewed and unimodal distributions. Here, we use the MATLAB

function skewness(X) for evaluating the right-skewness of the histogram, where skewness(X) > 0, denotes that the data is

spread out more to the right of the mean. Skewness is defined as
skewnessðXÞ = E

�ðX� mÞ3
s3

�

where m is the mean of X, s is the standard deviation of X and E(.) the expectation. For determining unimodality, we test whether the

maximum of the last quarter of histogram bins with bin width of one is less than the minimum of the first quarter of histogram bins.

Although the definition above only characterizes a heavy-tailed distribution, we find it to be sufficient for our analysis.

Classes I and III, are both defined by criterion 1 only, where criterion 1 is not met in both cases. For class I, none of the genes in a

network ever express above the given threshold. For class III, genes express above the given threshold but not once are more than

half of the genes above the given threshold at any given time of the simulation. Only if a simulation is able to fulfill all three criteria, will

we call it a simulation of class IV - rare transient coordinated high gene expression. If a simulation fulfills criteria 1, but fails to meet

both other criteria, we classify it into class II. To receive numbers of simulations in class IV - rare transient coordinated high expression

- per network size, we randomly determine three different trand, where each trand ˛ [0,999] (uniformly distributed) and evaluate all
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96000 simulations for being in class IV at the respective snapshot (Figure 2A). Note that all these requirements are tested automat-

ically using a script without manual/human intervention.

To show that criterion 3) is sufficient for defining heavy-tailed simulations in class IV in our analysis, we constrain criterion 3) further

aiming to identify sub-exponentially decaying, heavy-tailed distributions more directly. We therefore reevaluate all simulations so far

identified as class IV and compare their 99th percentiles of their expression distributions with those of fitted exponential distributions

(Figure S3C, right panel). We expect most of the 99th percentile of the expression distributions to be larger than the 99th percentile of

the fitted exponentials. Due to the symmetry of the networks and the resulting similarity between the expression distributions (Fig-

ure S2C), we only consider node one here, without the loss of generality. To avoid that the fitted exponentials account for the heavy-

tails, we constrain the fits to have a maximal bin number (bin size of one) within H 1 of the maximal bin number (bin size one) of the

expression distributions. We do so by sequentially increasing/decreasing the exponential parameter m by steps of 10, sampling 1000

times from the resulting exponential distribution with theMATLAB function exprnd(m,1,1000) and comparing the maximal bin number

of the resulting histograms. We repeat the above until the maximal bin number of the exponential distribution is within the predefined

range ofH 1. As expression distributions with a large maximum bin are more similar to lognormal distributions with small variances

and less to exponentials, we restrict the analysis to expression distributions with a maximum bin of% 15 (Figure S3B). The threshold

of a maximum bin of 15 was determined by considering the simulations and their exponential fits. We additionally discard simulations

for which the optimization takes more than 1000 iterations or is producing non-positive parameter values.

Most (82%) of the 99th percentile of the simulated expression distributions are above the diagonal, hence larger than the 99thpercen-

tile of the fitted exponential distributions (Figure S3C, right panel). The 99th percentile of all the ninemarker genes in Shaffer et al. also lie

above the diagonal in the general vicinity of the points corresponding to simulations with rare coordinated high states (Figure S3C, left

panel). We therefore conclude that criterion 3) sufficiently selects for sub-exponentially decaying heavy-tailed distributions.

We additionally, perform parts of the analysis again on two different levels of stricter stringency for criterion of heavy-tailed distri-

butions (Figures S4F–S4M):

A) All simulations fulfilling criteria 1) - 3) which additionally comply to the above mentioned analysis (maximum bin % 15, 99th

percentile of expression distribution > 99th percentile of fitted exponential, <1000 iterations to reach a H 1 of the maximal

bin number (bin size one) in the optimization for determining the exponential fit and producing non-positive parameter values)

(Figures S4J–S4M)

B) All simulations fulfilling criteria 1) - 3) which additionally comply to the above mentioned analysis or have a maximum bin > 15

(Figures S4F–S4I)

The results are qualitatively very similar to the results we receive if we perform the analysis only on criteria 1) - 3) (Figures 2, 3 and

S4). The 6 and 7 rare coordinated high parameter sets identified by themore stringent analyses A) and B), respectively, are subsets of

the original eight rare coordinated high parameter sets (Figures 3A, S4H, and S4L). Although the resulting optimized decision trees

vary slightly, they still identify all three parameters, ron, radd and roff, controlling rare transient coordinated states, as in the original

analysis. Together, we conclude that the simple characterization of heavy-tailed distributions is sufficient for further analysis.

The analysis above isaprerequisite for further findingsandstatements.Due to its importance,we tested its robustnesswith respect to

the definition of the threshold, marking the mRNA count above which a gene is called to be in the high-gene expression state, and with

respect to the number of mRNA counts required above the threshold to call it a coordinated high state (both determining criterion 1).

For the test network 5.3, we hence repeated the analysis for thresholds:

thres = x$d$
rprod
rdeg

;

where x = 0.3 : 0.05 : 1 (here, for 100 latin hypercube sampled parameter sets (Table S1), andwe only test for class IV). Decreasing the

threshold down to 0.6 of the high-expression steady state does not change the set of simulations with rare behavior in comparison to

the results for x = 0.8. Even a further decrease of the threshold (down to 0.3 of the high-expression steady state) manifests in a similar

result: half of the simulations identified previously to show rare behavior are still classified as such. Hence, we keep x = 0.8 for the rest

of the analysis (Table S1).

Next, for network 5.3 and the 100 parameter sets (Table S1), we repeated the analysis requiring at least 1, 2, 4, and 5mRNA counts

to be above the threshold at least once, in order for the simulation to fulfill criterion 1. The lower the required mRNA count, the more

simulations fulfill criterion 1 (peaking at a required mRNA count of at least 1 with 11 out of the 100 simulations showing rare behavior

according to this definition). The above set of simulations entails the set of simulations fulfilling criterion 1 at the standard required

mRNA count of at least 3 (7 out of 100 simulations). Hence, we keep the definition of coordinated overexpression to more than

half the nodes being above the threshold.

Additionally, we computed the Gini indices for the gene expression distributions of both the simulations showing rare coordinated

high states and the experimental data (Figures 2D and S3A) (Jiang et al., 2016; Shaffer et al., 2017). A Gini coefficient of 0 implies

perfect equality such that for a given gene, all cells within a population have the same number of mRNAmolecules, whereas 1 implies

perfect inequality such that one cell expresses all themRNAmolecules while others express none.We used theMATLAB function gini

(Gini coefficient and the Lorentz curve (https://www.mathworks.com/matlabcentral/fileexchange/28080-gini-coefficient-and-the-

lorentz-curve), MATLAB Central File Exchange. Retrieved October 24, 2019.) for the computations.
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Network Topologies
Connectivity

We define a measure for the connectivity of the networks, where

connectivity = number of ingoing edges for any node of the network

where a self-loop is also considered to be an ingoing edge. As we constrain our analysis to symmetric networks (same number of in-

going edges for all nodes in a network per definition), we are able to define one single connectivity per network. The constraints

enable us to directly evaluate the impact of the connectivity of the network on the ability to form rare behavior.

Self-loops

A network with a direct auto-activation is called a network with a self-loop. Due to the restriction of symmetric networks, all networks

can be classified as having self-loops for all nodes or not having self-loop for any node. Due to non-isomorphism, the set of networks

contains for each network without self-loops an identical network with self-loops. We evaluate the ability of these different edge clas-

ses on the formation of rare coordinated high states (Figure 2G).

Characteristic Distance

The characteristic distance of a network is defined as the average shortest path length for all pairs of nodeswithin a given network. To

calculate this distance, we used theMATLAB function shortestpath on all pairs of nodes.We evaluated the ability of the characteristic

distance normalized to the network size on the formation of rare coordinated high states (Figure S5F).

Quantitative Analysis
For each of the 96,000 simulations showing rare coordinated high states we performed a quantitative analysis. First, we define a high

expression region as a regionwhich is initiated by the firstmRNA count to exceed the threshold, terminated by the lastmRNA count to

drop below the threshold and requires to contain a coordinated high expression state (criterion 1: more than half the mRNA counts

have to exceed the defined threshold) between the initiation and termination time-points. Breaks of up to 50 time unit intervals are

accepted due to the stochastic nature of the simulations. For example, in a 3 node network, where we require at least 2mRNA counts

to exceed the threshold for a coordinated high state: the first mRNA count exceeds the threshold (initiation), then the second mRNA

count exceeds the threshold (initiation of high state) but then drops below the threshold for 50 time units before exceeding the

threshold again, is still counted as one high-expression region. The length of 50 time units were defined arbitrarily. Due to the sto-

chasticity of the system and the conservative definition of the threshold (located close to the high-expression steady state), we

observe these temporary violations of criterion 1. In order to create sensible statistics on the quantitative behavior of the simulations,

the temporary relaxation of criterion 1 is necessary.

In the quantitative analysis we extract the total time spent in a high state (out of 1,000,000 time units) from all simulations showing

rare behavior (Figure S3D).

Decision Tree Optimization, Generalized Linear Models and Constrained Simulations
We classify all parameter sets into two classes, rare coordinated high parameter sets and non-rare coordinated high parameter sets,

according to the percentage of total simulations per parameter set (96 simulations) in which rare coordinated high states are

observed. The threshold above which a parameter set is called a rare coordinated high parameter set is at 20%. More than 19 of

the 96 simulations have to show rare behavior in order for a parameter set to be called a rare coordinated high parameter set.

The threshold was set according to a summarizing histogram, in which we see a clear distinction between the two groups: the

main body of the histogram being located below 20% and the few parameter sets deviating extremely from that main group (>

20%). According to this binary classification, we performed a decision tree optimization (MATLAB function fitctree).

To validate the results of the decision tree optimization, we used generalized linear models on all seven independent parameters

ron, radd, n, roff, rprod, d and rdeg with the MATLAB function fitglm(X,Y,’Distribution’,’binomial’).

To validate that the parameter region determined by the decision tree optimization favors the formation of simulations with rare

coordinated high states, we generate a new set of parameters constrained to values close to the minimal and maximal values of

ron, radd and roff for the rare coordinated high parameter sets:
Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.025

roff 0.06 0.1

d 2 100

radd 0.15 0.36

n 0.1 10
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We latin hypercube sample 1000 parameter sets from that constrained parameter space. For all 1000 parameter sets we simulate

1000000 time units by Gillespie’s next reaction method for networks 3.2 and 5.3 (Figure S9). Each of these simulations was evaluated

for having rare coordinated high states according to the three criteria (STAR Methods, section Simulation Classes).

Sensitivity Analysis
For each parameter, we tested its sensitivity across its corresponding parameter space (see STAR Methods, section Parameters).

Briefly, we take network 3.2 (Figure S9) for the detailed analysis as network 3.2 shows rare coordinated high states in all eight rare

coordinated high parameter sets. For each of the seven independent parameters (ron, roff, rpod, rdeg, n, d, radd), we determine 10 equi-

distant points across its parameter space, and create new parameter sets by swapping these new parameters one-by-one with ones

from the eight rare coordinated high parameter sets, resulting in 8*7*10 = 560 new parameter sets. We simulate 1,000,000 time units

with Gillepsie’s next reaction method for these newly created parameter sets and evaluate all new simulations for showing rare co-

ordinated high states. For each of the 10 newly sampled parameter values per parameter we receive 8 binary decisions where ‘1’

indicates that the simulation exhibits rare coordinated high states and ‘0’ that it does not. Our analysis confirmed that the three pa-

rameters (ron, roff, and radd) identified by the decision tree algorithm and generalized linear model are indeed critical for producing the

rare coordinated high states (Figure S6D). We also found a moderate dependence on the Hill coefficient n, also confirmed by the low

p-value for n from generalized linear model analysis (Figure S6C).

Burst Analysis: Maintenance of Rare Coordinated High States
For all simulations showing rare coordinated high states, we determine the fraction and frequency of transcriptional bursts in both the

high and baseline time-regions (Figures 4B and 4C). By fraction we mean the percentage of the total time the system is bursting. By

frequency we mean the number of bursts per unit time. Additionally, we determine the number of high states and the total time spent

in a high state for a network of size three (network 3.2, Figure S9) and three independent nodes for each of the parameter sets showing

rare coordinated high states in the connected network (Figure 4D).

Entry and Exit Mechanisms
Entering/Exiting of High Expression Region - Transcriptional Bursts

For all of the simulations in class IV showing rare coordinated high states - we analyze whether the durations of transcriptional bursts

are coordinated with the entering and exiting of high time-regions (Figure 4A; STAR Methods; section Quantitative Analysis).

For all of the simulations showing rare transient coordinated high gene expression, we analyze the distributions of waiting times

between genes entering and exiting the high expression region (see Quantitative Analysis).

Entering high expression regions - For all high expression regions, we determine the first time-points at which the gene counts

exceed the threshold (only for genes with a gene count exceeding the threshold during a particular high expression region at least

once). We then consider the waiting times - the time interval between the ascending sorted time-points of genes entering the high

expression region. These distributions - atmost N-1 distributions for a network of size N, one for eachwaiting time between the genes

- are compared to exponential distributions by the Lilliefors test according to the MATLAB function lillietest(X, ’Distr’, ’exp’) at a sig-

nificance level of 0.05.

Entering/Exiting of High Expression Region – Times

For all of the simulations showing rare transient coordinated high gene expression, we analyze the distributions of waiting times be-

tween genes entering and exiting the high expression region (see Quantitative Analysis).

Entering high expression regions - For all high expression regions, we determine the first time-points at which the gene counts

exceed the threshold (only for genes with a gene count exceeding the threshold during a particular high expression region at least

once). We then consider the waiting times - the time interval between the ascending sorted time-points of genes entering the high

expression region. These distributions - atmost N-1 distributions for a network of size N, one for eachwaiting time between the genes

- are compared to exponential distributions by the Lilliefors test according to the MATLAB function lillietest(X, ’Distr’, ’exp’) at a sig-

nificance level of 0.05.

Exiting high expression regions - For all high expression regionswe determine the last time-points at which the gene counts exceed

the threshold (again, only for genes with a gene count exceeding the threshold during a particular high expression region at least

once). We consider the waiting times and compare their distributions to exponential distributions by the Lilliefors test by applying

the MATLAB function lillietest(X, ’Distr’, ’exp’) at a significance level of 0.05.

Comparative Network Inference
Here we describe the computational techniques we used to infer the gene interaction network structure of the pre-drug and post-

drug cells. When studying regulatory interactions between genes in a network, it can be useful to abstract the problem into a graph

theory framework. Let us assume a set of N genes, with the expression level of each gene represented by the random variable Xi, with

i ˛ {1,...,N}. The network of interactions between genes can then be represented as a graph of N nodes. An edge Xi / Xj signifies a

regulatory relationship in which Xi either upregulates or downregulates Xj (Singh et al., 2018).

The computational challenge of network inference is to uncover the true edges of the gene interaction network from statistical re-

lationships between gene expression levels. Many different algorithms, often based onmutual information, conditional probability, or

regression analysis, have been developed (Singh et al., 2018; Huynh-Thu and Sanguinetti, 2019; Saint-Antoine and Singh, 2019). The
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output of an inference algorithm is amatrix of edgeweights, whichwewill call Wwith dimensions NxN. In thismatrix, the element wij is

a measure of how confident we can be that the edge Xi / Xj exists in the network. A final network prediction will typically set a

threshold for edge weights, and exclude any edges that fall below the threshold. Edges Xi / Xi, called ‘‘self-edges’’ are typically

excluded for the final network prediction, except in cases when temporal data is being analyzed. Since we are using atemporal

expression data here, self-edges will be excluded from the analysis.

It is common to judge a network inference algorithm’s reliability by testing it on a ‘‘gold standard’’ dataset, for which the true struc-

ture of the network is already known, to see how well it can recover the real edges from the expression data (Huynh-Thu and San-

guinetti, 2019). We have chosen to use the Phixer algorithm (Singh et al., 2018), based on its impressive performance when bench-

marked on the DREAM5 Challenge gold standard datasets (weblink: http://dreamchallenges.org/project/dream-5-network-

inference-challenge/; last accessed: 05/06/2019).

Phixer

Phixer computes edge weights using the phi-mixing coefficient. For discrete random variables X and Y taking values in sets A and B,

the phi-mixing coefficient 4(XjY) is defined as:

fðXi

		XjÞ = maxS4A;T4B

		Pr
Xi ˛S
		Xj ˛T

��PrfXi ˛Sg		: (Equation 1)

We then assign4(XijXj) as the weight of the edge Xj/ Xi. The phi-mixing coefficient is an asymmetric measure, so the weight of the

edge Xi / Xj may be different (Singh et al., 2018).

The original Phixer algorithm includes a pruning step, which attempts to correct for false positives byminimizing redundancy in the

network. For every possible triplet of nodes Xi, Xj, and Xk, the following inequality is checked:

4ðXijXkÞ%min


4ðXi

		XjÞ;4ðXj

		XkÞ
�

(Equation 2)

If Equation 2 holds, the edge Xk / Xi is eliminated. However, previous work has found that the pruning step, though theoretically

sensible, typically reduces accuracy in practice (Saint-Antoine and Singh, 2019), possibly due to the prevalence of redundant con-

nections, such as feed forward loops in gene regulatory networks. So, we removed this part of the algorithm in order to achieve the

highest possible level of accuracy.

The Phixer software is available online at the creator’s GitHub page: https://github.com/nitinksingh/phixer/ (last accessed: 05/06/

2019).We used the original C code, and kept the default parameter values the same, except for changing ‘‘NROW’’ to 19 and ‘‘TSAM-

PLE’’ to 4000, to reflect the dimensions of the input data files. The original Phixer code includes, by default, 10 bootstrapping runs, as

well as a built-in procedure for binning the raw data, which we did not alter. We removed the pruning step from the code, but other-

wise left the edge weight calculation process unchanged.

Data Description

The two pre-drug datasets are referred to as NoDrug1 and NoDrug2 in the supplementary data files (Table S2). The datasets con-

taining clusters of resistant cells after four weeks of drug exposure are referred to as Fourweeks1-cluster1, Fourweeks1-cluster2,

etc. where we differentiate between Fourweeks1with four clusters and Fourweeks2with three clusters. Details of how these datasets

were acquired are presented in (Shaffer et al., 2017).

Bootstrapping Controls

We found that the Phixer algorithm tends to predict more connections for larger sample sizes, even when the samples are taken from

the same dataset. To control for the differences in original sample sizes of various samples, we bootstrapped the original datasets

into 4000-sample datasets before performing the Phixer analysis. The number 4000 was chosen arbitrarily; bootstrapped sample

sizes of 1000, 2000, and 6000 also appeared to produce similar results.

Randomized Controls

For each size-controlled dataset to be analyzed, we created a randomized control consisting of permutations of each gene column

from the original dataset (Table S2). We then performed the Phixer analysis on these randomized controls. The resulting edge weight

distributions give us a baseline or control edge weight for Phixer that, in principle, reflects potential false positives. We found that in

the controls, nearly all of the predicted edge weights were below 0.45 (Figure S8B). Therefore, we decided to choose 0.45 as a

threshold for the non-control analysis, thus eliminating edges that could have been predicted by chance alone.

Finally, since the analysis contains two stochastic elements (the bootstrapping to correct for the sample size issue and the boot-

strapping step in the Phixer algorithm itself) we had to be sure that the observed differences in connectivity were not due to chance.

For each dataset, we ran the entire analysis (including both the bootstrapping size correction and the Phixer algorithm) 1000 times,

and provide the distributions of the number of edges with weight greater than 0.45 (Table S2).

Asymmetric Networks or Parameter Sets
To test the generality of the results, we generate asymmetric simulations. We introduce asymmetry in both network architectures and

the parameter sets.

Asymmetric Network

We randomly determine a weakly-connected but asymmetric five-node network (Figure S2G). We simulate the network with 100

parameter sets which are latin hypercube sampled out of the same parameter space as the 1000 parameter sets of themain analysis.
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Out of these 100 simulations, two simulations are classified as showing rare, transient coordinated high gene expression (fulfills all

three criteria in STAR Methods, section Simulation Classes, Figures S2H and S2I).

Asymmetric Parameter Sets
For the main analysis, we use the same parameter set, consisting of seven independent parameters (STARMethods, section Param-

eters), for all nodes in a network. We introduce asymmetry by assigning each node in a network a separate set of parameters. Hence,

we latin-hypercube sample 100 parameter sets out of a 7 x N parameter space, where N is the number of nodes of the network, with

the MATLAB function lhsdesign_modified. Due to the high dimensionality, we here confine the parameter space to:
Parameter Lower boundary Upper boundary

rprod 0.01 1

rdeg 0.001 0.1

ron 0.001 0.1

roff 0.001 0.1

d 2 100

radd 0.2 0.4

n 5 10
where the changes in the boundaries are highlighted in blue. We confine the parameter space according to the clustering of rare

coordinated high parameter sets. In total, six parameter sets give rise to rare-states more frequently than others for all 96 networks.

Only two out of the seven independent parameters, radd and n, show a strong correlation with the rare coordinated high state pro-

ducing parameter sets as determined by a decision tree optimization. The boundaries in the table above are formed according to

these decision tree boundaries in which five out of the six rare coordinated high state producing parameters lie (Table S1).

For these 100 parameter sets, we generated simulations for five-node network 5.3 (Figure S2J). Out of the resulting 100 simula-

tions, we find two showing rare, transient coordinated high gene expression (fulfills all three criteria in STAR Methods, section Simu-

lation Classes; Figures S2K–S2M).

QUANTIFICATION AND STATISTICAL ANALYSIS

Figure 2E: Independent sampling of trand was performed 3 times. Boxplots show the median and 25th and 75th percentiles. Figures

4B, 4C, 4E, and 4F: Two-sample Kolmogorov-Smirnov test tested for significance level 0.05. Figures 4H and 4I: Lilliefors test tested

for significance level 0.05. Figures S4F and S4J: Independent sampling of trand was performed 3 times. Boxplots show the median

and 25th and 75th percentiles. Figures S5A andS5B: Independent sampling of trand was performed 3 times. Boxplots show themedian

and 25th and 75th percentiles. Figures S7A and S7B: Lilliefors test tested for significance level 0.05.

DATA AND CODE AVAILABILITY

Data
The data used and generated in this manuscript is available via Dropbox (https://www.dropbox.com/sh/n94q45zkn5w54fe/

AACC3cgts4kD6MWEE452pEgEa?dl=0).

Code
The MATLAB code used for the analysis of this manuscript is available on GitHub and the DOI is accessible via Zenodo (https://doi.

org/10.5281/zenodo.3713697). The analysis was performed with MATLAB R2017a and R2018a.
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Figure S1. Related to Figure 1 and STAR Methods. 
(A) Depending on the network architecture and the parameters of the gene expression model, 
we observe either stably low expression (left), stably high expression (right) or transient 
coordinated high expression (middle) for the constitutive model. 
(B) The distributions of simultaneously overexpressed genes and the gene products at the 
population level (B middle) show bimodal distributions and are inconsistent with the 
observations in drug naive melanoma cells. 
(C) The number of all possible networks increases with network size. The subset of weakly-
connected, non-isomorphic, symmetric networks decreases the testable architecture space by 
many orders of magnitude. 
(D) Frequency matrix of experimental RNA FISH data (Shaffer et al., 2017, 2018). Each entry 
corresponds to the fraction of cells in which each gene-pair is highly expressed. The 
corresponding scale bar is shown below. No clear driver gene or hierarchy is apparent from 
this frequency matrix. 
(E) For simulations with a star-shaped network (left), the frequency matrix of paired high 
expressions shows an increased frequency for the central node (node 1) (right). This suggests 
that a star-shaped network may lead to hierarchies within the joint frequencies of genes 
exhibiting the high expression state (right).  
(F) The frequency matrix of simulations with symmetric networks (left) does not show gene 
pairs with a considerable increased frequency of high expression (right). This suggests that 
symmetric networks do not form hierarchical structures in the joint frequencies of high 
expression). 
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Figure S2. Simulations of varying network sizes and asymmetries are able to 
recapitulate the number of simultaneously highly expressed genes and expression 
distribution as seen in drug naive melanoma. Related to Figure 2 and STAR Methods.  
(A) Distribution of simulation classes across all 96,000 simulations. 0.62% of simulations show 
rare transient coordinated high expression. 
(B) The simulated distributions of simultaneously highly expressed genes and expression are 
qualitatively similar to data from a pre-resistant melanoma population ubiquitously in networks 
with different numbers of nodes. Shown for a two node (top), three node (middle) and eight 
node network (bottom). 
(C) The gene expression distributions of all five nodes (the gene expression distribution of 
node one is shown in (B)) are qualitatively similar. 
(D-F) Network of size 10 (A) with corresponding simulation (B) and distributions of 
simultaneously overexpressed genes and gene expression (C). The distributions show 
qualitatively the same behavior as drug naive melanoma cells. 
(G-I) Asymmetric network architecture (D) with corresponding simulation (E) and distributions 
of simultaneously overexpressed genes and gene expression (F). The distributions show 
qualitatively the same behavior as drug naive melanoma cells. 
(J-L) Symmetric network architecture and an asymmetric parameter set (G) with corresponding 
simulation (H) and distributions of simultaneously overexpressed genes and gene expression 
(I) . The distributions show qualitatively the same behavior as drug naive melanoma cells. 
(M) The gene expression distributions of all five nodes (the gene expression distribution of 
node one is shown in (I)) generated with an asymmetric parameter set display different levels 
of heavy-tails. 
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Figure S3. Most simulations with rare coordinated high states show heavy-tails in their 
gene expression distributions. Related to Figure 2 and STAR Methods.  
(A) Expression distributions determined by single cell RNA-FISH of nine identified marker 
genes (data from Schaffer et al., 2017) show heavy-tails. 
(B) Simulated gene expression distributions deviating too much from exponential distributions 
(left panel), where we define ‘deviating too much’ as having a maximum bin of over 15 gene 
products for bin width one, are discarded in the analysis shown in (C).  
(C) Exponential distributions were fitted to the gene expression distributions for all simulations 
with rare coordinated high states which were not discarded according to (B). The 99th 
percentiles of the simulations and fitted exponentials were extracted and compared. Higher 
values of the 99th percentiles of the simulations in comparison to the fitted exponentials 
suggest a heavier tail in the simulations. Overall, the tails of the simulated distributions for gene 
expressions are fatter than of fitted exponential distributions (right panel) (see STAR Methods). 
The same is true for the experimentally observed expression distributions (left panel). 
(D) Simulations of particular parameter sets across different network architectures and sizes 
show similar (normalized) time in high expression relative to other parameter sets. 
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Figure S4. Transcriptional bursting model with fast protein synthesis and degradation 
or multiplicative gene regulation shows simulations with rare coordinated high states. 
Related to Figure 2 and Figure 3 and STAR Methods.  
(A) Schematic of the transcriptional bursting model with translation for two nodes. DNA is either 
in an inactive (off) or active (on) state. Transitions take place with rates ron and roff, where mRNA 
is synthesized with rates rpod and d*rprod, respectively, d>1. mRNA degrades with rate rdeg. Protein 
is synthesized with rate rprodP and degraded with rdegP. Gene regulation is modeled by a Hill 
function, where the protein count of the regulating gene A increases the activation of the 
regulated gene B.  
(B) Fast translation events where protein synthesis and degradation is ten times faster than 
mRNA synthesis and degradation leads to simulations with rare coordinated high states. The 
simulated distributions of simultaneously highly expressed proteins and protein expression 
qualitatively capture features of experimental data from a pre-resistant melanoma population. 
The networks for simulation are indicated in the top right corner. 
(C) Schematic of multiplicative gene regulation. Gene regulation on the gene activation of the 
regulated gene is the product of the Hill functions of regulating genes X and Y, rate radd and a 
factor (the number of regulating genes, see STAR Methods). 
(D) Multiplicative gene regulation leads to more simulations showing rare coordinated high 
states than additive gene regulation.  
(E) The simulated distributions of simultaneously highly expressed genes and expression are 
qualitatively similar to data from a pre-resistant melanoma population. The networks for 
simulation are indicated in the top right corner. 
(F-M) Two levels of stringencies for the definition of heavy-tailed distributions show 
qualitatively similar results (F-I and J-M) to each other and to the stringency defined in main 
text (Figure 2). (F,J) Independent sampling of trand was performed 3 times. Boxplots show the 
median and 25th and 75th percentiles. 
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Figure S5. Networks with higher connectivity or without auto-activation show less 
simulations with rare coordinated high states. Related to Figure 2 and STAR Methods.  
(A-B) Number of simulations with rare coordinated high states normalized by network size (A) 
and number of networks within each network size (2, 3, 4, and 5 nodes) (B). The 
measurements were performed via three independent and randomly sampled trand (boxplots 
show median, 25th and 75th percentiles).  
(C) Increasing connectivity within all networks of sizes two (left), three (middle) and eight (right) 
leads to a decrease in the number of simulations with rare coordinated high states. The 
frequency of rare coordinated high states depends on the network connectivity, which is 
defined as number of ingoing edges for any node of the network. Shown here is the 
dependence for all  two- (left), three- (middle) and eight-node (right) networks, such that 
increasing connectivity within all networks leads to a decrease in the number of simulations 
with rare coordinated high states. Each dot represents a particular network. 
(D) All network sizes show the same trend of inverse relation between connectivity and number 
of simulations with rare coordinated high states. Network sizes are highlighted in unique colors. 
 

 

 



Figure S6.

n

D

0

0.5

1

radd roff d

fre
qu

en
cy

rare coordinated high parameter s sets

E

on

off

on

off

0 1000
time

ge
ne

 p
ro

du
ct

0

350

G

0 1000
time

ge
ne

 p
ro

du
ct

0

350

radd

on

off

on

off

F

0 1000
time

ge
ne

 p
ro

du
ct

0

350

radd

on

off

on

off

0 1000 01 0.10 0 0 0 100.10.11 ronrdegrprod

ron

r a
dd

0 0.10

1

roff

r a
dd

0 0.1
0

1

ron

r o
ff

0 0.1
0

0.1
C

intercept
rprod
rdeg
ron
n
radd
roff

d

0.484
0.355
0.003
0.065
0.014
0.005
0.601

0.017
parameter p value

Y ~ rprod + rdeg + ron
+ n + radd + roff + d 

model:B

%
 o

f n
et

w
or

ks
 w

ith
ra

re
 c

oo
rd

in
at

ed
 h

ig
h 

st
at

es
A

0

100

0

100

parameter sets
0 1000500

0

100

0

100

parameter sets
0 1000500

2 nodes 3 nodes

5 nodes 8 nodes

0 0 03 2 2
number of rare coordinated high parameter sets



Figure S6. Three out of seven parameters regulate the formation of rare coordinated 
high states. Related to Figure 3 and STAR Methods.  
(A) For every parameter set all 96 simulations (one for each of the 96 networks; 2 for network 
size 2, 4 for network size 3, 10 for network size 5 and 80 for network size 8) were evaluated 
for showing rare coordinated high states. For any network size the percentage of the 
simulations with rare coordinated high states per parameter set is shown. The rare coordinated 
high parameter sets (orange) give rise to rare coordinated high states more frequently than 
others in any given network of sizes two, three, five, and eight (from top left to bottom right). 
(B) Analysis of the parameter sets by the generalized linear model where the model 
specification, parameters, and the respective p values are shown. Parameters with p-value 
less than 0.05 are considered significant. 
(C) Phase space overlaid with all tested 1000 parameter sets for ron - radd , ron - roff and roff - radd show 
that the rare coordinated parameters are narrowly constrained in the respective 2D spaces 
(orange). 
(D) For all 7 independent parameters, rprod, rdeg, ron, n, radd, roff and d, at least 10 equidistant points 
across their parameter spaces were determined and new parameter sets based on the eight 
rare coordinated high parameter sets created. For all 560 new parameter sets (7 independent 
parameters, 8 rare coordinated high parameter sets and at least 10 new equidistant points), 
the simulations were evaluated for showing rare coordinated high states. Every point 
represents the frequency of simulations with rare coordinated high states for all eight new 
simulations with corresponding fixed parameter value. The parameter values of all eight rare 
coordinated high parameter sets are indicated in orange. The sensitivity analysis reflects the 
findings of the decision tree optimization and generalized linear model showing that three 
parameters, ron, roff and radd are more sensitive to changes. 
(E-G) Increasing parameter radd leads to more stable high expression shown for radd = 0 (E), radd 
= 0.29 (F) and radd = 100,000 (G). 
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Figure S7. Related to Figure 4 and STAR Methods. Counterexamples of  
(A) Representative plot of distribution that satisfies the Lilliefors test at significance level 0.05 
corresponding to Figure 4H (p-value > 0.05).  
(B) Representative plot of distribution that rejects the Lilliefors test at significance level 0.05 
corresponding to Figure 4I  (p-value < 0.001). 
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Figure S8. The inferred gene regulatory networks underlying resistant colonies are 
more connected than of drug naive cells.Related to Figure 5 and STAR Methods.  
(A) Applying the network inference analysis 1000 times and fixing the edge weight threshold 
to 0.45, gives distributions for the number of edges in the inferred gene regulatory networks 
for both drug naive cells (red) and resistant colonies (black) (distributions shown for one 
example each). The distributions of number of edges in the inferred gene regulatory networks 
are considerably increased for most of the resistant colonies.  
(B) For randomized controls consisting of permutations of each gene column from the original 
dataset, the edge weight is below 0.45, shown for all biological replicates. This edge weight 
threshold was taken for the analysis in (A) and (C). 
(C) The resistant colonies (gray) have more edges in their respective inferred gene regulatory 
networks than drug naive melanoma cells (red), shown for inferred gene regulatory networks 
using edge weight threshold 0.45. 
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Figure S9.



Figure S9. Related to Star Methods. All architectures of sizes two (A), three (B), five (C) 
and eight (D). 
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